Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Hum Genet ; 143(2): 151-157, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38349571

ABSTRACT

Experimental models suggest an important role for mitochondrial dysfunction in the pathogenesis of chronic kidney disease (CKD) and acute kidney injury (AKI), but little is known regarding the impact of common mitochondrial genetic variation on kidney health. We sought to evaluate associations of inherited mitochondrial DNA (mtDNA) variation with risk of CKD and AKI in a large population-based cohort. We categorized UK Biobank participants who self-identified as white into eight distinct mtDNA haplotypes, which were previously identified based on their associations with phenotypes associated with mitochondrial DNA copy number, a measure of mitochondrial function. We used linear and logistic regression models to evaluate associations of these mtDNA haplotypes with estimated glomerular filtration rate by serum creatinine and cystatin C (eGFRCr-CysC, N = 362,802), prevalent (N = 416 cases) and incident (N = 405 cases) end-stage kidney disease (ESKD), AKI defined by diagnostic codes (N = 14,170 cases), and urine albumin/creatinine ratio (ACR, N = 114,662). The mean age was 57 ± 8 years and the mean eGFR was 90 ± 14 ml/min/1.73 m2. MtDNA haplotype was significantly associated with eGFR (p = 2.8E-12), but not with prevalent ESKD (p = 5.9E-2), incident ESKD (p = 0.93), AKI (p = 0.26), or urine ACR (p = 0.54). The association of mtDNA haplotype with eGFR remained significant after adjustment for diabetes mellitus and hypertension (p = 1.2E-10). When compared to the reference haplotype, mtDNA haplotypes I (ß = 0.402, standard error (SE) = 0.111; p = 2.7E-4), IV (ß = 0.430, SE = 0.073; p = 4.2E-9), and V (ß = 0.233, SE = 0.050; p = 2.7E-6) were each associated with higher eGFR. Among self-identified white UK Biobank participants, mtDNA haplotype was associated with eGFR, but not with ESKD, AKI or albuminuria.


Subject(s)
Acute Kidney Injury , Kidney Failure, Chronic , Renal Insufficiency, Chronic , Humans , Middle Aged , Aged , Biological Specimen Banks , UK Biobank , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/genetics , Acute Kidney Injury/epidemiology , Acute Kidney Injury/genetics , Acute Kidney Injury/diagnosis , Glomerular Filtration Rate/genetics , Mitochondria/genetics , DNA, Mitochondrial/genetics , Genetic Variation , Creatinine
3.
PLoS One ; 17(7): e0270951, 2022.
Article in English | MEDLINE | ID: mdl-35849594

ABSTRACT

Mitochondrial DNA copy number (mtDNA-CN) measured in blood has been associated with many aging-related diseases, with higher mtDNA-CN typically associated with lower disease risk. Exercise training is an excellent preventative tool against aging-related disorders and has been shown to increase mitochondrial function in muscle. Using the Sugar, Hypertension, and Physical Exercise cohorts (N = 105), we evaluated the effect of 6-months of exercise intervention on mtDNA-CN measured in blood. Although there was no significant relationship between exercise intervention and mtDNA-CN change (P = 0.29), there was a nominally significant association between mtDNA-CN and metabolic syndrome (P = 0.04), which has been seen in previous literature. We also identified a nominally significant association between higher mtDNA-CN and higher insulin sensitivity (P = 0.02).


Subject(s)
Hypertension , Insulin Resistance , Metabolic Syndrome , DNA Copy Number Variations , DNA, Mitochondrial/genetics , Exercise , Humans , Hypertension/genetics , Insulin Resistance/genetics , Metabolic Syndrome/genetics , Mitochondria/genetics , Sugars
4.
Genome Res ; 31(3): 349-358, 2021 03.
Article in English | MEDLINE | ID: mdl-33441415

ABSTRACT

Mitochondrial DNA copy number (mtDNA-CN) is a proxy for mitochondrial function and is associated with aging-related diseases. However, it is unclear how mtDNA-CN measured in blood can reflect diseases that primarily manifest in other tissues. Using the Genotype-Tissue Expression Project, we interrogated relationships between mtDNA-CN measured in whole blood and gene expression from whole blood and 47 additional tissues in 419 individuals. mtDNA-CN was significantly associated with expression of 700 genes in whole blood, including nuclear genes required for mtDNA replication. Significant enrichment was observed for splicing and ubiquitin-mediated proteolysis pathways, as well as target genes for the mitochondrial transcription factor NRF1. In nonblood tissues, there were more significantly associated genes than expected in 30 tissues, suggesting that global gene expression in those tissues is correlated with blood-derived mtDNA-CN. Neurodegenerative disease pathways were significantly associated in multiple tissues, and in an independent data set, the UK Biobank, we observed that higher mtDNA-CN was significantly associated with lower rates of both prevalent (OR = 0.89, CI = 0.83; 0.96) and incident neurodegenerative disease (HR = 0.95, 95% CI = 0.91;0.98). The observation that mtDNA-CN measured in blood is associated with gene expression in other tissues suggests that blood-derived mtDNA-CN can reflect metabolic health across multiple tissues. Identification of key pathways including splicing, RNA binding, and catalysis reinforces the importance of mitochondria in maintaining cellular homeostasis. Finally, validation of the role of mtDNA CN in neurodegenerative disease in a large independent cohort study solidifies the link between blood-derived mtDNA-CN, altered gene expression in multiple tissues, and aging-related disease.


Subject(s)
DNA Copy Number Variations , DNA, Mitochondrial/blood , DNA, Mitochondrial/genetics , Gene Expression , Neurodegenerative Diseases/genetics , Cohort Studies , Female , Humans , Male , Organ Specificity/genetics
5.
BMC Med ; 18(1): 246, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32933497

ABSTRACT

BACKGROUND: Mechanistic studies suggest that mitochondria DNA (mtDNA) dysfunction may be associated with increased risk of atrial fibrillation (AF). The association between mtDNA copy number (mtDNA-CN) and incident AF in the general population, however, remains unknown. METHODS: We conducted prospective analyses of 19,709 participants from the Atherosclerosis Risk in Communities Study (ARIC), the Multi-Ethnic Study of Atherosclerosis (MESA), and the Cardiovascular Health Study (CHS). mtDNA-CN from the peripheral blood was calculated from probe intensities on the Affymetrix Genome-Wide Human single nucleotide polymorphisms (SNP) Array 6.0 in ARIC and MESA and from multiplexed real-time quantitative polymerase chain reaction (qPCR) in CHS. Incident AF cases were identified through electrocardiograms, review of hospital discharge codes, Medicare claims, and death certificates. RESULTS: The median follow-up time was 21.4 years in ARIC, 12.9 years in MESA, and 11.0 years in CHS, during which 4021 participants developed incident atrial fibrillation (1761 in ARIC, 790 in MESA, and 1470 in CHS). In fully adjusted models, participants with the lowest quintile of mitochondria DNA copy number had an overall 13% increased risk (95% CI 1 to 27%) of incident atrial fibrillation compared to those with the highest quintile. Dose-response spline analysis also showed an inverse association between mitochondria DNA copy number and hazard for atrial fibrillation for all three cohorts. These associations were consistent across subgroups. CONCLUSIONS: Mitochondria DNA copy number was inversely associated with the risk of AF independent of traditional cardiovascular risk factors. These findings implicate mitochondria DNA copy number as a novel risk factor for atrial fibrillation. Further research is warranted to understand the underlying mechanisms and to evaluate the role of mitochondria DNA copy number in the management of atrial fibrillation risk.


Subject(s)
Atrial Fibrillation/genetics , DNA Copy Number Variations/genetics , DNA, Mitochondrial/genetics , Atrial Fibrillation/pathology , Cohort Studies , Female , Humans , Male , Middle Aged , Prospective Studies , Risk Factors
6.
Nat Commun ; 11(1): 1933, 2020 04 22.
Article in English | MEDLINE | ID: mdl-32321923

ABSTRACT

A challenge of next generation sequencing is read contamination. We use Genotype-Tissue Expression (GTEx) datasets and technical metadata along with RNA-seq datasets from other studies to understand factors that contribute to contamination. Here we report, of 48 analyzed tissues in GTEx, 26 have variant co-expression clusters of four highly expressed and pancreas-enriched genes (PRSS1, PNLIP, CLPS, and/or CELA3A). Fourteen additional highly expressed genes from other tissues also indicate contamination. Sample contamination is strongly associated with a sample being sequenced on the same day as a tissue that natively expresses those genes. Discrepant SNPs across four contaminating genes validate the contamination. Low-level contamination affects ~40% of samples and leads to numerous eQTL assignments in inappropriate tissues among these 18 genes. This type of contamination occurs widely, impacting bulk and single cell (scRNA-seq) data set analysis. In conclusion, highly expressed, tissue-enriched genes basally contaminate GTEx and other datasets impacting analyses.


Subject(s)
DNA Contamination , RNA/genetics , Genotype , High-Throughput Nucleotide Sequencing , Humans , Polymorphism, Single Nucleotide , Sequence Analysis, RNA , Single-Cell Analysis
7.
PLoS One ; 15(1): e0228166, 2020.
Article in English | MEDLINE | ID: mdl-32004343

ABSTRACT

Mitochondrial DNA copy number (mtDNA-CN), a measure of the number of mitochondrial genomes per cell, is a minimally invasive proxy measure for mitochondrial function and has been associated with several aging-related diseases. Although quantitative real-time PCR (qPCR) is the current gold standard method for measuring mtDNA-CN, mtDNA-CN can also be measured from genotyping microarray probe intensities and DNA sequencing read counts. To conduct a comprehensive examination on the performance of these methods, we use known mtDNA-CN correlates (age, sex, white blood cell count, Duffy locus genotype, incident cardiovascular disease) to evaluate mtDNA-CN calculated from qPCR, two microarray platforms, as well as whole genome (WGS) and whole exome sequence (WES) data across 1,085 participants from the Atherosclerosis Risk in Communities (ARIC) study and 3,489 participants from the Multi-Ethnic Study of Atherosclerosis (MESA). We observe mtDNA-CN derived from WGS data is significantly more associated with known correlates compared to all other methods (p < 0.001). Additionally, mtDNA-CN measured from WGS is on average more significantly associated with traits by 5.6 orders of magnitude and has effect size estimates 5.8 times more extreme than the current gold standard of qPCR. We further investigated the role of DNA extraction method on mtDNA-CN estimate reproducibility and found mtDNA-CN estimated from cell lysate is significantly less variable than traditional phenol-chloroform-isoamyl alcohol (p = 5.44x10-4) and silica-based column selection (p = 2.82x10-7). In conclusion, we recommend the field moves towards more accurate methods for mtDNA-CN, as well as re-analyze trait associations as more WGS data becomes available from larger initiatives such as TOPMed.


Subject(s)
DNA, Mitochondrial/genetics , Gene Dosage , Genomics/methods , Aged , DNA, Mitochondrial/isolation & purification , Female , Humans , Male , Middle Aged
8.
Curr Rheumatol Rep ; 20(5): 26, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29611059

ABSTRACT

PURPOSE OF REVIEW: Our goal is to review the recent literature pertaining to the genetics of sporadic inclusion body myositis (IBM). RECENT FINDINGS: In a study of 252 IBM patients, the class II MHC allele HLA-DRB1*03:01 showed the most significant association with IBM, and that risk could be largely attributed to amino acids within the peptide-binding pocket. Candidate gene sequencing identified rare missense variants in proteins regulating protein homeostasis including VCP and SQSTM1. An unbiased approach employing exome sequencing of genes encoding rimmed vacuole proteins identified FYCO1 variants in IBM. Ongoing GWAS approaches may shed new light on genetic risk factors for IBM. Many variants have been reported at an increased frequency in IBM in small studies; however, only HLA association has shown genome-wide significance. Future studies are needed to validate variants in larger cohorts and to understand the molecular roles these risk factors play in IBM.


Subject(s)
Myositis, Inclusion Body/genetics , Genetic Predisposition to Disease , Genetic Therapy/methods , HLA Antigens/genetics , HLA-DRB1 Chains/genetics , Humans , Mitochondria, Muscle/metabolism , Myositis, Inclusion Body/immunology , Myositis, Inclusion Body/therapy , Proteostasis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...