Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 387
1.
J Nucl Med ; 65(Suppl 1): 29S-37S, 2024 May 06.
Article En | MEDLINE | ID: mdl-38719237

Nuclear medicine in China started in 1956 and, with the rapid development of the economy and continuous breakthroughs in precision medicine, has made significant progress in recent years. Almost 13,000 staff members in nearly 1,200 hospitals serve more than 3.9 million patients each year. Over the past decade, the radiopharmaceutical industry has developed rapidly, with the initial formation of a complete industrial chain of production of various radiopharmaceuticals for both clinical use and basic research. Advanced equipment such as PET/CT scanners is being manufactured domestically and even installed abroad. Recently, research into screening and synthesizing new target probes and their translation into the clinic has gained more attention, with various new tracers with potential clinical value being thoroughly studied. Simultaneously, 68Ga- and 177Lu-labeled tumor-targeted probes and others have been implemented for theranostics in an increasing number of hospitals and would be helped by approval from the National Medical Products Administration. Over the next 10-20 y, with the launch of the Mid- and Long-Term Development Plan for Medical Isotopes (2021-2035) by the Chinese government, there is great potential for nuclear medicine in China. With the rise in independent innovation in manufacturing, the shortage of radiopharmaceuticals will be effectively curtailed. We anticipate that the scale of nuclear medicine will at least double by 2035, covering all high-grade hospitals and leading to the aim of "one county, one department" in China.


Nuclear Medicine , China , Humans , Radiopharmaceuticals , Precision Medicine
2.
Article En | MEDLINE | ID: mdl-38713572

3D Gaussian Splatting (3D-GS) has emerged as a significant advancement in the field of Computer Graphics, offering explicit scene representation and novel view synthesis without the reliance on neural networks, such as Neural Radiance Fields (NeRF). This technique has found diverse applications in areas such as robotics, urban mapping, autonomous navigation, and virtual reality/augmented reality, just name a few. Given the growing popularity and expanding research in 3D Gaussian Splatting, this paper presents a comprehensive survey of relevant papers from the past year. We organize the survey into taxonomies based on characteristics and applications, providing an introduction to the theoretical underpinnings of 3D Gaussian Splatting. Our goal through this survey is to acquaint new researchers with 3D Gaussian Splatting, serve as a valuable reference for seminal works in the field, and inspire future research directions, as discussed in our concluding section.

3.
Sci Total Environ ; 926: 172125, 2024 May 20.
Article En | MEDLINE | ID: mdl-38565353

Despite both microplastics (MPs) and harmful algae blooms (HABs) may pose a severe threat to the immunity of marine bivalves, the toxification mechanism underlying is far from being fully understood. In addition, owing to the prevalence and sudden occurrence characteristics of MPs and HABs, respectively, bivalves with MP-exposure experience may face acute challenge of harmful algae under realistic scenarios. However, little is known about the impacts and underlying mechanisms of MP-exposure experience on the susceptibility of immunity to HABs in bivalve mollusks. Taking polystyrene MPs and diarrhetic shellfish toxin-producing Prorocentrum lima as representatives, the impacts of MP-exposure on immunity vulnerability to HABs were investigated in the thick-shell mussel, Mytilus coruscus. Our results revealed evident immunotoxicity of MPs and P. lima to the mussel, as evidenced by significantly impaired total count, phagocytic activity, and cell viability of haemocytes, which may result from the induction of oxidative stress, aggravation of haemocyte apoptosis, and shortage in cellular energy supply. Moreover, marked disruptions of immunity, antioxidant system, apoptosis regulation, and metabolism upon MPs and P. lima exposure were illustrated by gene expression and comparative metabolomic analyses. Furthermore, the mussels that experienced MP-exposure were shown to be more vulnerable to P. lima, indicated by greater degree of deleterious effects on abovementioned parameters detected. In general, our findings emphasize the threat of MPs and HABs to bivalve species, which deserves close attention and more investigation.


Marine Toxins , Mytilus , Animals , Marine Toxins/toxicity , Microplastics/metabolism , Plastics/metabolism , Mytilus/metabolism , Shellfish
4.
Bioresour Technol ; 401: 130708, 2024 Jun.
Article En | MEDLINE | ID: mdl-38636878

In this study, the biochemical response of Phaeodactylum tricornutum to varying concentrations of inorganic selenium (Se) was investigated. It was observed that, when combined with fulvic acid, P. tricornutum exhibited enhanced uptake and biotransformation of inorganic Se, as well as increased microalgal lipid biosynthesis. Notably, when subjected to moderate (5 and 10 mg/L) and high (20 and 40 mg/L) concentrations of selenite under fulvic acid treatment, there was a discernible redirection of carbon flux towards lipogenesis and protein biosynthesis from carbohydrates. In addition, the key parameters of microalgae-based biofuels aligned with the necessary criteria outlined in biofuel regulations. Furthermore, the Se removal capabilities of P. tricornutum, assisted by fulvic acid, were coupled with the accumulation of substantial amounts of organic Se, specifically SeCys. These findings present a viable and successful approach to establish a microalgae-based system for Se uptake and biotransformation.


Benzopyrans , Biofuels , Biotransformation , Diatoms , Diatoms/metabolism , Benzopyrans/metabolism , Selenious Acid/metabolism , Microalgae/metabolism
5.
Curr Issues Mol Biol ; 46(3): 1700-1712, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38534726

Vitamin K2 (MK-7) has been shown to cause significant changes in different physiological processes and diseases, but its role in acute lung injury (ALI) is unclear. Therefore, in this study, we aimed to evaluate the protective effects of VK2 against LPS-induced ALI in mice. The male C57BL/6J mice were randomly divided into six groups (n = 7): the control group, LPS group, negative control group (LPS + Oil), positive control group (LPS + DEX), LPS + VK2 (L) group (VK2, 1.5 mg/kg), and LPS + VK2 (H) group (VK2, 15 mg/kg). Hematoxylin-eosin (HE) staining of lung tissue was performed. Antioxidant superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) activities, and the Ca2+ level in the lung tissue were measured. The effects of VK2 on inflammation, apoptosis, tight junction (TJ) injury, mitochondrial dysfunction, and autophagy were quantitatively assessed using Western blot analysis. Compared with the LPS group, VK2 improved histopathological changes; alleviated inflammation, apoptosis, and TJ injury; increased antioxidant enzyme activity; reduced Ca2+ overload; regulated mitochondrial function; and inhibited lung autophagy. These results indicate that VK2 could improve tight junction protein loss, inflammation, and cell apoptosis in LPS-induced ALI by inhibiting the mitochondrial dysfunction and excessive autophagy, indicating that VK2 plays a beneficial role in ALI and might be a potential therapeutic strategy.

6.
BMC Oral Health ; 24(1): 361, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38515087

OBJECTIVE: The purpose of this study was to assess the composition of the oral microbial flora of adults with rampant caries in China to provide guidance for treatment. PATIENTS AND METHODS: Sixty human salivary and supragingival plaque samples were collected. They were characterized into four groups: patients with rampant caries with Sjogren's syndrome (RC-SS) or high-sugar diet (RC-HD), common dental caries (DC), and healthy individuals (HP). The 16S rRNA V3-V4 region of the bacterial DNA was detected by Illumina sequencing. PCoA based on OTU with Bray-Curtis algorithm, the abundance of each level, LEfSe analysis, network analysis, and PICRUSt analysis were carried out between the four groups and two sample types. Clinical and demographic data were compared using analysis of variance (ANOVA) or the nonparametric Kruskal-Wallis rank-sum test, depending on the normality of the data, using GraphPad Prism 8 (P < 0.05). RESULTS: OTU principal component analysis revealed a significant difference between healthy individuals and those with RC-SS. In the saliva of patients with rampant caries, the relative abundance of Firmicutes increased significantly at the phylum level. Further, Streptocpccus, Veillonella, Prevotella, and Dialister increased, while Neisseria and Haemophilus decreased at the genus level. Veillonella increased in the plaque samples of patients with rampant caries. CONCLUSION: Both salivary and dental plaque composition were significantly different between healthy individuals and patients with rampant caries. This study provides a microbiological basis for exploring the etiology of rampant caries. CLINICAL RELEVANCE: This study provides basic information on the flora of the oral cavity in adults with rampant caries in China. These findings could serve as a reference for the treatment of this disease.


Dental Caries , Microbiota , Sjogren's Syndrome , Adult , Humans , Dental Caries/microbiology , Sjogren's Syndrome/complications , RNA, Ribosomal, 16S/genetics , Dental Caries Susceptibility , Saliva/microbiology , Bacteria , Microbiota/genetics , Sugars , Diet
7.
Sci Rep ; 14(1): 3075, 2024 02 06.
Article En | MEDLINE | ID: mdl-38321064

Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide and there is a huge unmet need to find safer and more effective drugs. Vitamin K has been found to regulate lipid metabolism in the liver. However, the effects of vitamin K2 on NAFLD is unclear. This study aims to evaluate the preventive and therapeutic effects of vitamin K2 in the process of fatty liver formation and to explore molecular mechanisms the associated with lipid metabolism. A non-alcoholic fatty liver model was established by high-fat diet administration for three months. Vitamin K2 significantly reduced the body weight, abdominal circumference and body fat percentage of NAFLD mice. Vitamin K2 also showed histological benefits in reducing hepatic steatosis. NAFLD mice induced by high-fat diet showed increased HMGR while vitamin K2 intervention could reverse the pathological lterations. Adiponectin (APN) is an endogenous bioactive polypeptide or protein secreted by adipocytes. We detected APN, SOD, AlaDH and other indicators that may affect the state of high-fat diet mice, but the experimental results showed that the above indicators did not change significantly. It is worth noting that the effect of vitamin K2 supplementation on the lipid-lowering effect of uc OC in vivo needs to be further explored. This study first reported the protective effect of vitamin K2 on high-fat diet-induced NAFLD in mice. The protective effect of vitamin K2 may be related to the improvement of lipid metabolism disorder in NAFLD.


Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/pathology , Vitamin K 2/metabolism , Diet, High-Fat , Liver/metabolism , Lipid Metabolism , Adiponectin/metabolism , Mice, Inbred C57BL
8.
Dalton Trans ; 53(9): 4119-4126, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38315146

To bring about a revolution in energy storage through Li-ion batteries, it is crucial to develop a scalable preparation method for Si-based composite anodes. However, the severe volume expansion and poor ionic transport properties of Si-based composites present significant challenges. Previous research focused on SiO and nano Si/C composites to address these issues. In this study, mechanical milling was used to introduce a SiOx layer onto the surface of Si by mixing Si and SiO2 in a 1 : 1 mass ratio. The resulting Si+SiO2 composites (denoted as SS50) exhibited an initial coulombic efficiency (ICE) of 73.5% and high rate performance. To further stabilize the overall structure, kerosene was introduced as a carbon source precursor to generate a coating layer. The resulting multiphase composite structure (SiOx+SiO2+C), designated as SS50-900C, demonstrated a capacity retention of 79.5% over 280 cycles at its capacity of 487 mA h g-1. These results suggest that a cost-effective mechanical ball milling refinement of Si+SiO2 and a gas-phase encapsulation process can significantly improve the electrochemical performance of Si-based composites.

9.
J Nucl Med ; 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38388513

The uMI Panorama is a novel PET/CT system using silicon photomultiplier and application-specific integrated circuit technologies and providing exceptional spatial and time-of-flight (TOF) resolutions. The objective of this study was to assess the physical performance of the uMI Panorama in accordance with the National Electrical Manufacturers Association (NEMA) NU 2-2018 standard. Methods: Spatial resolution, sensitivity, count rate performance, accuracy, image quality, and TOF resolution were evaluated in accordance with the guidelines outlined in the NEMA NU 2-2018 standard. Energy resolution was determined using the same dataset acquired for the count rate performance evaluation. Images from a Hoffman brain phantom, a mini-Derenzo phantom, and 3 patient studies were evaluated to demonstrate system performance. Results: The transaxial spatial resolution at full width at half maximum was measured as 2.88 mm with a 1-cm offset from the center axial field of view. The sensitivity at the center axial field of view was 20.1 kcps/MBq. At an activity concentration of 73.0 kBq/mL, the peak noise-equivalent count rate (NECR) reached 576 kcps with a scatter fraction of approximately 33.2%. For activity concentrations at or below the peak NECR, the maximum relative count rate error among all slices remained consistently below 3%. When assessed using the NEMA image quality phantom, overall image contrast recovery ranged from 63.2% to 88.4%, whereas background variability ranged from 4.2% to 1.1%. TOF resolution was 189 ps at 5.3 kBq/mL and was consistently lower than 200 ps for activity concentrations at or below the peak NECR. The patient studies demonstrated that scans at 2 min/bed produced images characterized by low noise and high contrast. Clear delineation of nuclei, spinal cords, and other substructures of the brain was observed in the brain PET images. Conclusion: uMI Panorama, the world's first commercial PET system with sub-200-ps TOF resolution, demonstrated fine spatial and fast TOF resolutions, robust count rate performance, and high quantification accuracy across a wide range of activity levels. This advanced technology offers enhanced diagnostic capability for detecting small and low-contrast lesions while showing promising potential under high-count-rate imaging scenarios.

10.
Eur J Nucl Med Mol Imaging ; 51(6): 1713-1724, 2024 May.
Article En | MEDLINE | ID: mdl-38216779

PURPOSE: Enzymolysis clearance strategy, characterized by releasing the non-reabsorbable radioactive fragment under the specific cleavage of enzymes, is confirmed to be a safe and effective way to reduce the renal radioactivity accumulation in mice. However, the effectiveness of this strategy in humans remains unknown. Human epidermal growth factor receptor 2 (HER2) is overexpressed in various types of tumors, and radiolabeled HER2 Affibody is believed to be an attractive tool for HER2-targeted theranostics. However, its wide application is limited by the high and persistent renal uptake. In this study, we intend to validate the effectiveness of enzymolysis clearance strategy in reducing renal accumulation by using a modified HER2 Affibody. MATERIALS AND METHODS: A new HER2 Affibody ligand, NOTA-MVK-ZHER2:2891, containing a cleavable Met-Val-Lys (MVK) linker was synthesized and labeled with 68Ga. The microPET imaging study was performed in SKOV-3 tumor mice to assess the uptakes of the control ligand and the MVK one in tumors and kidneys. Seven healthy volunteers were included for biodistribution and dosimetric studies with both the control and MVK ligands performed 1 week apart. Urine and blood samples from healthy volunteers were collected for in vivo metabolism study of the two ligands. Four HER2-positive and two HER2-negative patients were recruited for [68Ga]Ga-NOTA-MVK-ZHER2:2891 PET/CT imaging at 2 and 4 h post-injection (p.i.). RESULTS: [68Ga]Ga-NOTA-MVK-ZHER2:2891 was stable both in PBS and in mouse serum. MicroPET images showed that the tumor uptake of [68Ga]Ga-NOTA-MVK-ZHER2:2891 was comparable to that of [68Ga]Ga-NOTA-ZHER2:2891 at all the time points, while the kidney uptake was significantly reduced 40 min p.i. (P < 0.05). The biodistribution study in healthy volunteers showed that the kidney uptake of MVK ligand was significantly lower than that of the control ligand at 1 h p.i. (P < 0.05), with the SUVmean of 34.3 and 45.8, respectively, while the uptakes of the two ligands in the other organs showed negligible difference. The effective doses of the MVK ligand and the control one were 26.1 and 28.7 µSv/MBq, respectively. The enzymolysis fragment of [68Ga]Ga-NOTA-Met-OH was observed in the urine samples of healthy volunteers injected with the MVK ligand, indicating that the enzymolysis clearance strategy worked in humans. The PET/CT study of patients showed that the range of SUVmax of HER2-positive lesions was 9.4-21, while that of HER2-negative lesions was 2.7-6.2, which suggested that the MVK modification did not affect the ability of ZHER2:2891 structure to bind with HER2. CONCLUSION: We for the first time demonstrated that enzymolysis clearance strategy can effectively reduce renal radioactivity accumulation in humans. This strategy is expected to decrease renal radiation dose of peptide and small protein-based radiotracers, especially in the field of radionuclide therapy.


Gallium Radioisotopes , Kidney , Neoplasms , Receptor, ErbB-2 , Animals , Female , Humans , Mice , Cell Line, Tumor , Kidney/metabolism , Kidney/radiation effects , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/chemistry , Receptor, ErbB-2/metabolism , Recombinant Fusion Proteins/pharmacokinetics , Tissue Distribution , Neoplasms/diagnostic imaging , Neoplasms/genetics
11.
Res Sq ; 2024 Jan 09.
Article En | MEDLINE | ID: mdl-38260360

Understanding the spatial organization of nucleoporins (Nups) with intrinsically disordered domains within the nuclear pore complex (NPC) is crucial for deciphering eukaryotic nucleocytoplasmic transport. Leveraging high-speed 2D single-molecule tracking and virtual 3D super-resolution microscopy in live HeLa cells, we investigated the spatial distribution of all eleven phenylalanine-glycine (FG)-rich Nups within individual NPCs. Our study reveals a nuanced landscape of FG-Nup conformations and arrangements. Five FG-Nups are steadfastly anchored at the NPC scaffold, collectively shaping a central doughnut-shaped channel, while six others exhibit heightened flexibility, extending towards the cytoplasmic and nucleoplasmic regions. Intriguingly, Nup214 and Nup153 contribute to cap-like structures that dynamically alternate between open and closed states along the nucleocytoplasmic transport axis, impacting the cytoplasmic and nuclear sides, respectively. Furthermore, Nup98, concentrated at the scaffold region, extends throughout the entire NPC while overlapping with other FG-Nups. Together, these eleven FG-Nups compose a versatile, capped trichoid channel spanning approximately 270 nm across the nuclear envelope. This adaptable trichoid channel facilitates a spectrum of pathways for passive diffusion and facilitated nucleocytoplasmic transport. Our comprehensive mapping of FG-Nup organization within live NPCs offers a unifying mechanism accommodating multiple transport pathways, thereby advancing our understanding of cellular transport processes.

12.
STAR Protoc ; 5(1): 102790, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38113144

Here, we present a protocol for single-molecule super-resolution imaging of the nuclear export of pre-ribosomal subunits pre-40S and pre-60S through nuclear pore complexes. We describe steps for plating cells and co-transfecting cells. We then detail steps for using single-point edge-excitation sub-diffraction microscopy, allowing visualization of real-time dynamics of the pre-ribosomal subunits. For complete details on the use and execution of this protocol, please refer to Junod et al. (2023).1.


Nuclear Pore , Saccharomyces cerevisiae Proteins , Nuclear Pore/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Active Transport, Cell Nucleus , Ribosome Subunits/metabolism , Single Molecule Imaging/methods
13.
Water Res ; 250: 120987, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38113594

Diuron (N-(3,4-dichlorophenyl)-N,N­dimethylurea, DCMU), a ureic herbicide, is extensively used in agriculture to boost crop productivity; however, its extensive application culminates in notable environmental pollution, especially in aquatic habitats. Therefore, the present study investigated the effect of diuron on the dinoflagellate Alexandrium pacificum, which is known to induce harmful algal blooms (HAB), and its potential to biodegrade DCMU. Following a four-day DCMU exposure, our results revealed that A. pacificum proficiently assimilated DCMU at concentrations of 0.05 mg/L and 0.1 mg/L in seawater, attaining a complete reduction (100 % efficiency) after 96 h for both concentrations. Moreover, evaluations of paralytic shellfish toxins content indicated that cells subjected to higher DCMU concentrations (0.1 mg/L) exhibited reductions of 73.4 %, 86.7 %, and 75 % in GTX1, GTX4, and NEO, respectively. Exposure to DCMU led to a notable decrease in A. pacificum's photosynthetic efficacy, accompanied by increased levels of reactive oxygen species (ROS) and suppressed cell growth, with a growth inhibition rate of 41.1 % at 72 h. Proteomic investigations pinpointed the diminished expression levels of specific proteins like SxtV and SxtW, linked to paralytic shellfish toxins (PSTs) synthesis, as well as key proteins associated with Photosystem II, namely PsbA, PsbD, PsbO, and PsbU. Conversely, proteins central to the cysteine biosynthesis pathways exhibited enhanced expression. In summary, our results preliminarily resolved the molecular mechanisms underlying the response of A. pacificum to DCMU and revealed that DCMU affected the synthesis of PSTs. Meanwhile, our data suggested that A. pacificum has great potential in scavenging DCMU.


Dinoflagellida , Shellfish Poisoning , Humans , Diuron/toxicity , Proteomics , Dinoflagellida/physiology , Harmful Algal Bloom
14.
Article En | MEDLINE | ID: mdl-38009048

Renal artery stenosis (RAS) hypertension is a common type of secondary hypertension. This paper aimed to explore how unilateral renal artery stenosis (Uni-RAS) and bilateral renal artery stenosis (Bi-RAS) caused renovascular hypertension with the fluid-structure interaction (FSI) method. Based on a real RAS model, 20 ideal models with different stenosis degrees were established by modifying the stenosis segment. The hemodynamic parameters at different degrees of stenosis, mass flow rate (MFR), pressure drop (PD), fractional flow reserve (FFR), oscillatory shear index (OSI), and relative residence time (RRT), were numerically calculated by the computational fluid dynamics (CFD) method. The numerical results showed that RAS caused the decrease of MFR, and the increase of PD and the proportion of high OSI and high RRT. In the case of RAS, it could not be regarded as a reference indicator for causing renovascular hypertension that the value of FFR was greater than 0.9. In addition, the results of the statistical analysis indicated that Uni-RAS and Bi-RAS were statistically different for MFR, PD and the proportion of high RRT.

15.
PLoS One ; 18(11): e0294763, 2023.
Article En | MEDLINE | ID: mdl-38011192

Acute lung injury (ALI) is a life-threatening disease that has received considerable critical attention in the field of intensive care. This study aimed to explore the role and mechanism of vitamin K2 (VK2) in ALI. Intraperitoneal injection of 7 mg/kg LPS was used to induce ALI in mice, and VK2 injection was intragastrically administered with the dose of 0.2 and 15 mg/kg. We found that VK2 improved the pulmonary pathology, reduced myeloperoxidase (MPO) activity and levels of TNF-α and IL-6, and boosted the level of IL-10 of mice with ALI. Moreover, VK2 played a significant part in apoptosis by downregulating and upregulating Caspase-3 and Bcl-2 expressions, respectively. As for further mechanism exploration, we found that VK2 inhibited P38 MAPK signaling. Our results also showed that VK2 inhibited ferroptosis, which manifested by reducing malondialdehyde (MDA) and iron levels, increasing glutathione (GSH) level, and upregulated and downregulated glutathione peroxidase 4 (GPX4) and heme oxygenase-1 (HO-1) expressions, respectively. In addition, VK2 also inhibited elastin degradation by reducing levels of uncarboxylated matrix Gla protein (uc-MGP) and desmosine (DES). Overall, VK2 robustly alleviated ALI by inhibiting LPS-induced inflammation, apoptosis, ferroptosis, and elastin degradation, making it a potential novel therapeutic candidate for ALI.


Acute Lung Injury , Ferroptosis , Mice , Animals , Lipopolysaccharides/adverse effects , Vitamin K 2/adverse effects , Elastin , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Inflammation/drug therapy , Inflammation/pathology , Apoptosis , Lung/pathology
16.
J Orthop Surg Res ; 18(1): 838, 2023 Nov 06.
Article En | MEDLINE | ID: mdl-37932742

BACKGROUND: Spinal cord ischemia-reperfusion injury (SCII) is a catastrophic event, which can cause paraplegia in severe cases. In the reperfusion stage, oxidative stress was up-regulated, which aggravated the injury and apoptosis of neurons. As the main active ingredient of garlic, diallyl trisulfide (DATS) displays strong antioxidant capacity. However, it is unknown whether DATS can protect the neurons of SCII. MATERIALS AND METHODS: In this study, the descending aorta at the distal end of the left subclavian artery was ligated and perfused again after 14 min. Samples including blood and spinal cord (L2-L5) were taken 24 h later for morphological and biochemical examination. RESULTS: After SCII, the rats showed motor dysfunction, increase apoptosis, malondialdehyde content, mitochondrial biogenesis and dynamic balance disorder. After the application of DATS, the adenosine monophosphate activated protein kinase (AMPK) was activated, the mitochondrial damage was improved, the oxidative stress was weakened, and the neuronal damage was recovered to some extent. However, the addition of compound C significantly weakened the protective effect of DATS. CONCLUSION: Oxidative stress caused by mitochondrial damage was one of the important mechanisms of neuronal damage in SCII. DATS could activate AMPK, stabilize mitochondrial biogenesis and dynamic balance, and reduce neuronal damage caused by oxidative stress.


AMP-Activated Protein Kinases , Reperfusion Injury , Rats , Animals , AMP-Activated Protein Kinases/metabolism , Oxidative Stress , Reperfusion Injury/metabolism , Antioxidants/pharmacology , Spinal Cord , Apoptosis , Mitochondria/metabolism
17.
Neural Netw ; 168: 560-568, 2023 Nov.
Article En | MEDLINE | ID: mdl-37837745

Graph-based multi-view clustering methods have achieved impressive success by exploring a complemental or independent graph embedding with low-dimension among multiple views. The majority of them, however, are shallow models with limited ability to learn the nonlinear information in multi-view data. To this end, we propose a novel deep graph reconstruction (DGR) framework for multi-view clustering, which contains three modules. Specifically, a Multi-graph Fusion Module (MFM) is employed to obtain the consensus graph. Then node representation is learned by the Graph Embedding Network (GEN). To assign clusters directly, the Clustering Assignment Module (CAM) is devised to obtain the final low-dimensional graph embedding, which can serve as the indicator matrix. In addition, a simple and powerful loss function is designed in the proposed DGR. Extensive experiments on seven real-world datasets have been conducted to verify the superior clustering performance and efficiency of DGR compared with the state-of-the-art methods.


Learning , Cluster Analysis , Consensus
18.
Front Cell Dev Biol ; 11: 1245939, 2023.
Article En | MEDLINE | ID: mdl-37876551

The nuclear pore complex (NPC) serves as a pivotal subcellular structure, acting as a gateway that orchestrates nucleocytoplasmic transport through a selectively permeable barrier. Nucleoporins (Nups), particularly those containing phenylalanine-glycine (FG) motifs, play indispensable roles within this barrier. Recent advancements in technology have significantly deepened our understanding of the NPC's architecture and operational intricacies, owing to comprehensive investigations. Nevertheless, the conspicuous presence of intrinsically disordered regions within FG-Nups continues to present a formidable challenge to conventional static characterization techniques. Historically, a multitude of strategies have been employed to unravel the intricate organization and behavior of FG-Nups within the NPC. These endeavors have given rise to multiple models that strive to elucidate the structural layout and functional significance of FG-Nups. Within this exhaustive review, we present a comprehensive overview of these prominent models, underscoring their proposed dynamic and structural attributes, supported by pertinent research. Through a comparative analysis, we endeavor to shed light on the distinct characteristics and contributions inherent in each model. Simultaneously, it remains crucial to acknowledge the scarcity of unequivocal validation for any of these models, as substantiated by empirical evidence.

19.
J Nucl Med ; 64(12): 1880-1888, 2023 12 01.
Article En | MEDLINE | ID: mdl-37827842

Kirsten rat sarcoma (KRAS) mutations are an important marker for tumor-targeted therapy. In this study, we sought to develop a KRASG12C oncoprotein-targeted PET tracer and to evaluate its translational potential for noninvasive imaging of the KRASG12C mutation in non-small cell lung cancer (NSCLC) and colorectal cancer (CRC) patients. Methods: [18F]PFPMD was synthesized on the basis of AMG510 (sotorasib) by attaching a polyethylene glycol chain to the quinazolinone structure. The binding selectivity and imaging potential of [18F]PFPMD were verified by cellular uptake, internalization, and blocking (H358: KRASG12C mutation; A549: non-KRASG12C mutation) studies, as well as by a small-animal PET/CT imaging study on tumor-bearing mice. Five healthy volunteers were enrolled to assess the safety, biodistribution, and dosimetry of [18F]PFPMD. Subsequently, 14 NSCLC or CRC patients with or without the KRASG12C mutation underwent [18F]PFPMD and [18F]FDG PET/CT imaging. The SUVmax of tumor uptake of [18F]PFPMD was measured and compared between patients with and without the KRASG12C mutation. Results: [18F]PFPMD was obtained with a high radiochemical yield, radiochemical purity, and stability. The protein-binding assay showed that [18F]PFPMD selectively binds to the KRASG12C protein. [18F]PFPMD uptake was significantly higher in H358 than in A549 and was decreased by pretreatment with AMG510 (H358 vs. A549: 3.22% ± 0.28% vs. 2.50% ± 0.25%, P < 0.05; block: 2.06% ± 0.13%, P < 0.01). Similar results were observed in tumor-bearing mice on PET imaging (H358 vs. A549: 3.93% ± 0.24% vs. 2.47% ± 0.26% injected dose/g, P < 0.01; block: 2.89% ± 0.29% injected dose/g; P < 0.05). [18F]PFPMD was safe in humans and was excreted primarily by the gallbladder and intestines. The whole-body effective dose was comparable to that of [18F]FDG. The accumulation of [18F]PFPMD in KRASG12C mutation tumors was significantly higher than that in non-KRASG12C mutation tumors (SUVmax: 3.73 ± 0.58 vs. 2.39 ± 0.22, P < 0.01) in NSCLC and CRC patients. Conclusion: [18F]PFPMD is a safe and promising PET tracer for noninvasive screening of the KRASG12C mutation status in NSCLC and CRC patients.


Carcinoma, Non-Small-Cell Lung , Colorectal Neoplasms , Lung Neoplasms , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Positron Emission Tomography Computed Tomography , Proto-Oncogene Proteins p21(ras)/genetics , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Fluorodeoxyglucose F18/therapeutic use , Tissue Distribution , Positron-Emission Tomography , Mutation , Lung/pathology , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/genetics
20.
BMC Genomics ; 24(1): 598, 2023 Oct 09.
Article En | MEDLINE | ID: mdl-37814244

BACKGROUND: Conus, a highly diverse species of venomous predators, has attracted significant attention in neuroscience and new drug development due to their rich collection of neuroactive peptides called conotoxins. Recent advancements in transcriptome, proteome, and genome analyses have facilitated the identification of conotoxins within Conus' venom glands, providing insights into the genetic features and evolutionary patterns of conotoxin genes. However, the underlying mechanism behind the extraordinary hypervariability of conotoxins remains largely unknown. RESULTS: We analyzed the transcriptomes of 34 Conus species, examining various tissues such as the venom duct, venom bulb, and salivary gland, leading to the identification of conotoxin genes. Genetic variation analysis revealed that a subset of these genes (15.78% of the total) in Conus species underwent positive selection (Ka/Ks > 1, p < 0.01). Additionally, we reassembled and annotated the genome of C. betulinus, uncovering 221 conotoxin-encoding genes. These genes primarily consisted of three exons, with a significant portion showing high transcriptional activity in the venom ducts. Importantly, the flanking regions and adjacent introns of conotoxin genes exhibited a higher prevalence of transposon elements, suggesting their potential contribution to the extensive variability observed in conotoxins. Furthermore, we detected genome duplication in C. betulinus, which likely contributed to the expansion of conotoxin gene numbers. Interestingly, our study also provided evidence of introgression among Conus species, indicating that interspecies hybridization may have played a role in shaping the evolution of diverse conotoxin genes. CONCLUSIONS: This study highlights the impact of adaptive evolution and introgressive hybridization on the genetic diversity of conotoxin genes and the evolution of Conus. We also propose a hypothesis suggesting that transposable elements might significantly contribute to the remarkable diversity observed in conotoxins. These findings not only enhance our understanding of peptide genetic diversity but also present a novel approach for peptide bioengineering.


Conotoxins , Conus Snail , Animals , Conotoxins/genetics , Conus Snail/genetics , Peptides/genetics , Genome , Genomics
...