Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 264
Filter
1.
J Hazard Mater ; 478: 135614, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39186844

ABSTRACT

In this study, a high-Si (Si) adsorbent (APR@Sam) was prepared by acid leaching slag (APR) from lead-zinc (Pb-Zn) tailings based on high-temperature alkali melting technology. The synthesized Si-based materials were applied to aqueous solutions contaminated with Pb and cadmium (Cd) to investigate the crucial role of active Si in sequestering heavy metals. The adsorption capacities of APR@Sam and the Si-depleted material (APR@Sam-NSi) were studied under different pH and temperature conditions. The results showed that as the pH increased from 3 to 7, the adsorption capacity increased, the active Si content in the solution increased by 63 %, and the maximum pH of the solution after adsorption was 7.12. After the removal of active Si, the Pb (II) and Cd (II) adsorption capacities of APR@Sam decreased by 45 % and 11.96 %, respectively. OH- promoted the release of Si into the solution, enhancing the material's adsorption efficiency. The reaction mechanism is mainly attributed to surface complexation guided by Si-O and Si-O-Si bonds, metal cation exchange, and bidentate coordination. The results indicated that the Si component is critical for the removal of Pb (II) and Cd (II) by APR@Sam and provide valuable insights into resource recovery strategies from leaching residues.

2.
Am J Case Rep ; 25: e944683, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39095976

ABSTRACT

BACKGROUND Pulmonary artery sling (PAS) is an anatomical vascular anomaly due to the origin of the left pulmonary artery from the right pulmonary artery, which runs posteriorly between the esophagus and trachea, resulting in compression of adjacent structures. Accurate evaluation for malformation of the pulmonary artery and severity of airway obstruction is essential to surgical strategy. This report presents the diagnosis and surgical management of pulmonary artery sling in a 12-year-old boy. CASE REPORT A 12-year-old boy had chest tightness and wheezing after exercise for 6 years. He was diagnosed with PSA based on findings from imaging tests, demonstrating the left pulmonary artery originated from the middle of the right pulmonary artery and the tracheal carina was located at the site of the T6 thoracic vertebra. The main bronchus and esophagus were compressed by the left pulmonary artery due to its ectopic origin. Then, after comprehensive preoperative assessment, the patient underwent surgical repair of PAS. CONCLUSIONS This report highlights the importance of pulmonary artery sling diagnosis, imaging, and surgical planning, and the role of a multidisciplinary team in preoperative and postoperative patient management. An individualized strategy based on the preoperative assessment, intraoperative coordination among cardiologists, surgeons, and perfusionists, and careful postoperative management are the core elements for successful PAS repair.


Subject(s)
Pulmonary Artery , Humans , Pulmonary Artery/abnormalities , Pulmonary Artery/surgery , Pulmonary Artery/diagnostic imaging , Male , Child , Vascular Malformations/surgery , Vascular Malformations/diagnosis
3.
Front Pharmacol ; 15: 1365639, 2024.
Article in English | MEDLINE | ID: mdl-39021837

ABSTRACT

Sepsis is a complex syndrome characterized by multi-organ dysfunction, due to the presence of harmful microorganisms in blood which could cause mortality. Complications associated with sepsis involve multiple organ dysfunction. The pathogenesis of sepsis remains intricate, with limited treatment options and high mortality rates. Traditional Chinese medicine (TCM) has consistently demonstrated to have a potential on various disease management. Its complements include reduction of oxidative stress, inhibiting inflammatory pathways, regulating immune responses, and improving microcirculation. Traditional Chinese medicine can mitigate or even treat sepsis in a human system. This review examines progress on the use of TCM extracts for treating sepsis through different pharmacological action and its mechanisms. The potential targets of TCM extracts and active ingredients for the treatment of sepsis and its complications have been elucidated through molecular biology research, network pharmacology prediction, molecular docking analysis, and visualization analysis. Our aim is to provide a theoretical basis and empirical support for utilizing TCM in the treatment of sepsis and its complications while also serving as a reference for future research and development of sepsis drugs.

4.
Sci Total Environ ; 948: 174856, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-39034004

ABSTRACT

The diversity of soil adsorbents for arsenic (As) and the often-overlooked influence of manganese (Mn) on As(III) oxidation impose challenges in predicting As adsorption in soils. This study uses Mössbauer spectroscopy, X-ray diffraction of oriented clay, and batch experiments to develop a kinetic coupled multi-surface complexation model that characterizes As adsorbents in natural soils and quantifies their contributions to As adsorption. The model integrates dynamic adsorption behaviors and Mn-oxide interactions with unified thermodynamic and kinetic parameters. The results indicate that As adsorption is governed by five primary adsorbents: poorly crystalline Fe oxides, well crystalline Fe oxides, Fe-rich clay, Fe-depletion clay, and organic carbon (OC). Fe oxides dominate As adsorption at low As concentrations. However, at higher As concentrations, soils from carbonate strata, with higher content of Fe-rich clay, exhibit stronger As adsorption capabilities than soils from Quaternary sediment strata. The enrichment in Fe-rich clay can enhance the resistance of adsorbed As to reduction processes affecting Fe oxides. Additionally, extensive redox cycles in paddy fields increase OC levels, enhancing their As adsorption compared to upland fields. This model framework provides novel insights into the intricate dynamics of As within soils and a versatile tool for predicting As adsorption across diverse soils.

5.
Stem Cell Rev Rep ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001965

ABSTRACT

Stem cells-derived extracellular vesicles (SC-EVs) have emerged as promising therapeutic agents for wound repair, recapitulating the biological effects of parent cells while mitigating immunogenic and tumorigenic risks. These EVs orchestrate wound healing processes, notably through modulating angiogenesis-a critical event in tissue revascularization and regeneration. This study provides a comprehensive overview of the multifaceted mechanisms underpinning the pro-angiogenic capacity of EVs from various stem cell sources within the wound microenvironment. By elucidating the molecular intricacies governing their angiogenic prowess, we aim to unravel the mechanistic repertoire underlying their remarkable potential to accelerate wound healing. Additionally, methods to enhance the angiogenic effects of SC-EVs, current limitations, and future perspectives are highlighted, emphasizing the significant potential of this rapidly advancing field in revolutionizing wound healing strategies.

6.
Environ Res ; 260: 119640, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39029727

ABSTRACT

Phosphorus in sewage is mostly enriched in activated sludge in wastewater treatment plants, making excess sludge an appropriate material for phosphorus recovery. The potential of vivianite (Fe3(PO4)2·8H2O) crystallization-based phosphorus recovery during the anaerobic digestion of thermally hydrolyzed sludge was discussed with influences of organic compounds on the formation of vivianite crystals being investigated in detail. Bovine serum albumin, humic acids and alginate, as model compounds of proteins, humic acids and polysaccharides, all inhibited vivianite crystallization, with the influence of humic acids being the most significant. A sludge retention time of >12 d for effective degradation of organic compounds and a certain degree of FeII excess are suggested to decrease the organics resulting inhibition. The results demonstrate the compatibility of vivianite-crystallization pathway of phosphorus recovery with anaerobic sludge digesters, and reveal the complexity of vivianite formation in the sludge with further research warranted to minimize the inhibitory influences.

7.
Nat Commun ; 15(1): 5961, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013878

ABSTRACT

Autoreactive CD4+ T helper cells are critical players that orchestrate the immune response both in multiple sclerosis (MS) and in other neuroinflammatory autoimmune diseases. Ubiquitination is a posttranslational protein modification involved in regulating a variety of cellular processes, including CD4+ T cell differentiation and function. However, only a limited number of E3 ubiquitin ligases have been characterized in terms of their biological functions, particularly in CD4+ T cell differentiation and function. In this study, we found that the RING finger protein 213 (RNF213) specifically promoted regulatory T (Treg) cell differentiation in CD4+ T cells and attenuated autoimmune disease development in an FOXO1-dependent manner. Mechanistically, RNF213 interacts with Forkhead Box Protein O1 (FOXO1) and promotes nuclear translocation of FOXO1 by K63-linked ubiquitination. Notably, RNF213 expression in CD4+ T cells was induced by IFN-ß and exerts a crucial role in the therapeutic efficacy of IFN-ß for MS. Together, our study findings collectively emphasize the pivotal role of RNF213 in modulating adaptive immune responses. RNF213 holds potential as a promising therapeutic target for addressing disorders associated with Treg cells.


Subject(s)
Cell Differentiation , Forkhead Box Protein O1 , Interferon-beta , T-Lymphocytes, Regulatory , Ubiquitin-Protein Ligases , Ubiquitination , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Animals , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Mice , Humans , Interferon-beta/metabolism , Mice, Inbred C57BL , Cell Nucleus/metabolism , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Multiple Sclerosis/genetics , Multiple Sclerosis/pathology , Active Transport, Cell Nucleus , Female , Mice, Knockout , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , HEK293 Cells
8.
Adv Sci (Weinh) ; 11(31): e2404456, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38894569

ABSTRACT

Considerable progress has been made in the development of drug delivery systems for diabetic wounds. However, underlying drawbacks, such as low delivery efficiency and poor tissue permeability, have rarely been addressed. In this study, a multifunctional biohybrid nanorobot platform comprising an artificial unit and several biological components is constructed. The artificial unit is a magnetically driven nanorobot surface modified with antibacterial 2-hydroxypropyltrimethyl ammonium chloride chitosan, which enables the entire platform to move and has excellent tissue penetration capacity. The biological components are two-step engineered extracellular vesicles that are first loaded with mangiferin, a natural polyphenolic compound with antioxidant properties, and then glycoengineered on the surface to enhance cellular uptake efficiency. As expected, the platform is more easily absorbed by endothelial cells and fibroblasts and exhibits outstanding dermal penetration performance and antioxidant properties. Encouraging results are also observed in infected diabetic wound models, showing improved wound re-epithelialization, collagen deposition, angiogenesis, and accelerated wound healing. Collectively, a biohybrid nanorobot platform that possesses the functionalities of both artificial units and biological components serves as an efficient delivery system to promote diabetic wound repair through dual-enhanced cell and tissue penetration and multistep interventions.


Subject(s)
Diabetes Mellitus, Experimental , Drug Delivery Systems , Extracellular Vesicles , Wound Healing , Wound Healing/drug effects , Animals , Extracellular Vesicles/metabolism , Drug Delivery Systems/methods , Humans , Disease Models, Animal , Mice , Chitosan/chemistry , Robotics/methods , Rats
9.
Environ Manage ; 74(3): 439-460, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38867057

ABSTRACT

The development of renewable energy has become an important means for the world to cope with climate change, ensure energy security, and protect the ecological environment. Using the panel data of 30 provinces in China from 2013 to 2021, this study used the mediating effect model and the spatial Durbin model (SDM) to explore the mechanism and spatial effects of renewable energy development on China's regional carbon emission reduction. The results show that: (1) Renewable energy development can help to reduce carbon emission intensity. (2) The results of mechanism analysis show that renewable energy development reduces carbon intensity by improving energy structure, promoting industrial structure optimization, and industrial structure upgrading. (3) The development of renewable energy can not only reduce the local carbon intensity but also have a positive spillover effect on the carbon intensity of neighboring regions. (4) Further analysis shows that the long-term effect of renewable energy development on carbon emissions is greater than the short-term effect. At the same time, the heterogeneity analysis shows that compared with the Yellow River basin, the development of renewable energy has a significant carbon emission reduction effect in the Yangtze River Economic Belt region. Energy-rich areas fall into the "resource curse", which makes the carbon emission reduction effect of renewable energy development not significant. This paper has certain reference significance for promoting reasonable decomposition between regions and formulating renewable energy development policies.


Subject(s)
Carbon , Climate Change , Renewable Energy , Spatio-Temporal Analysis , China , Carbon/analysis , Conservation of Natural Resources/methods , Models, Theoretical
10.
Life Sci ; 352: 122811, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38862062

ABSTRACT

Macrophages play key roles in atherosclerosis progression, and an imbalance in M1/M2 macrophages leads to unstable plaques; therefore, M1/M2 macrophage polarization-targeted treatments may serve as a new approach in the treatment of atherosclerosis. At present, there is little research on M1/M2 macrophage polarization-targeted nanotechnology. Proteolysis-targeting chimera (PROTAC) technology, a targeted protein degradation technology, mediates the degradation of target proteins and has been widely promoted in preclinical and clinical applications as a novel therapeutic modality. This review summarizes the recent studies on M1/M2 macrophage polarization-targeted nanotechnology, focusing on the mechanism and advantages of PROTACs in M1/M2 macrophage polarization as a new approach for the treatment of atherosclerosis.


Subject(s)
Atherosclerosis , Macrophages , Nanotechnology , Proteolysis , Atherosclerosis/drug therapy , Atherosclerosis/immunology , Humans , Macrophages/drug effects , Macrophages/metabolism , Animals , Nanotechnology/methods , Proteolysis/drug effects
11.
Nano Lett ; 24(22): 6821-6827, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38787786

ABSTRACT

In the quasi-two-dimensional superconductor NbSe2, the superconducting transition temperature (Tc) is layer-dependent, decreasing by about 60% in the monolayer limit. However, for the extremely anisotropic copper-based high-Tc superconductor Bi2Sr2CaCu2O8+δ (Bi-2212), the Tc of the monolayer is almost identical with that of its bulk counterpart. To clarify the effect of dimensionality on superconductivity, here, we successfully fabricate ultrathin flakes of iron-based high-Tc superconductors CsCa2Fe4As4F2 and CaKFe4As4. It is found that the Tc of monolayer CsCa2Fe4As4F2 (after tuning to the optimal doping by ionic liquid gating) is about 20% lower than that of the bulk crystal, while the Tc of three-layer CaKFe4As4 decreases by 46%, showing a more pronounced dimensional effect than that of CsCa2Fe4As4F2. By carefully examining their anisotropy and the c-axis coherence length, we reveal the general trend and empirical law of the layer-dependent superconductivity in these quasi-two-dimensional superconductors.

12.
Epilepsia Open ; 9(4): 1148-1165, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38798030

ABSTRACT

OBJECTIVE: To evaluate the prevalence of and risk factors for attention-deficit/hyperactivity disorder (ADHD) in children with epilepsy (CWE). METHODS: We conducted a systematic search in PubMed and Embase for the meta-analysis. The pooled prevalence of ADHD was calculated using a random-effects model; subgroup analyses were performed to explore heterogeneity. We collected raw data from articles reporting potential risk factors, which were included in the subsequent risk factor analysis. RESULTS: Forty-six articles met the inclusion criteria for the meta-analysis, which showed a pooled ADHD prevalence of 30.7% in CWE, with a predominance of the inattentive subtype of ADHD; the heterogeneity of prevalence was related to population source/study setting (clinic based, community based, or database based) and method of ADHD diagnosis (with or without clinical review). Risk factors for ADHD in epilepsy included younger age, intellectual/developmental disabilities, a family history of epilepsy, earlier epilepsy onset, absence epilepsy, more frequent seizures, and polytherapy; In contrast, risk factors such as sex, generalized epilepsy or seizures, epilepsy etiology, and electroencephalogram abnormalities were not significantly associated with the occurrence of ADHD. SIGNIFICANCE: The prevalence of ADHD in CWE is high and several potential risk factors are associated with it. This study contributes to a better understanding of ADHD in epilepsy for screening and treatment. PLAIN LANGUAGE SUMMARY: This systematic review summarizes the prevalence of attention-deficit/hyperactivity disorder (ADHD) occurring in children with epilepsy and analyses the risk factors for comorbid ADHD in epilepsy. By reviewing 46 articles, we concluded that the overall prevalence of ADHD in children with epilepsy was 30.7% and that intellectual/developmental disabilities were the most significant risk factor for combined ADHD in children with epilepsy. This study provides a wealth of information on comorbid ADHD in epilepsy, which will help clinicians identify and treat potential ADHD in children with epilepsy in a timely manner.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Epilepsy , Humans , Attention Deficit Disorder with Hyperactivity/epidemiology , Risk Factors , Epilepsy/epidemiology , Prevalence , Child , Comorbidity
13.
Pol J Pathol ; 75(1): 40-53, 2024.
Article in English | MEDLINE | ID: mdl-38741428

ABSTRACT

C1q/TNF-related protein-9 (CTRP9) has been reported to play roles in several types of retinal diseases. However, the role and the potential mechanism of CTRP9 in glaucoma are still incompletely understood. The expression of CTRP9 in OGD/R-induced retinal ganglion cells (RGCs) was detected by quantitative real-time polymerase chain reaction and western blot assay. Cell proliferation was identified by cell counting Kit-8 assay. Flow cytometry, enzyme-linked immunosorbent assay and western blot assay were performed to assess cell apoptosis. Unfolded protein response (UPR), endoplasmic reticulum (ER) stress and the AMPK pathway were evaluated by western blot assay. The data showed that the expression of CTRP9 was significantly downregulated in OGD/R-induced 661W cells. OGD/R treatment reduced cell viability, promoted cell apoptosis and activated the UPR and ER stress. The overexpression of CTRP9 reversed the effects of OGD/R on 661W cell viability, apoptosis, the UPR and ER stress, as well as the AMPK pathway. However, Compound C, an inhibitor of AMPK signaling, reversed the protection of CTRP9 overexpression against injury from OGD/R in 661W cells. In summary, the results revealed that CTRP9 abated the apoptosis and UPR of OGD/R-induced RGCs by regulating the AMPK pathway, which may provide a promising target for the treatment of glaucoma.


Subject(s)
AMP-Activated Protein Kinases , Apoptosis , Endoplasmic Reticulum Stress , Retinal Ganglion Cells , Signal Transduction , Unfolded Protein Response , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , Animals , AMP-Activated Protein Kinases/metabolism , Mice , Cell Line , Adiponectin/metabolism , Cell Survival , Glucose/metabolism , Glaucoma/metabolism , Glaucoma/pathology , Glycoproteins
14.
J Vis Exp ; (206)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38738889

ABSTRACT

Follicular Helper T (TFH) cells are perceived as an independent CD4+ T cell lineage that assists cognate B cells in producing high-affinity antibodies, thus establishing long-term humoral immunity. During acute viral infection, the fate commitment of virus-specific TFH cells is determined in the early infection phase, and investigations of the early-differentiated TFH cells are crucial in understanding T cell-dependent humoral immunity and optimizing vaccine design. In the study, using a mouse model of acute lymphocytic choriomeningitis virus (LCMV) infection and the TCR-transgenic SMARTA (SM) mouse with CD4+ T cells specifically recognizing LCMV glycoprotein epitope I-AbGP66-77, we described procedures to access the early fate commitment of virus-specific TFH cells based on flow cytometry stainings. Furthermore, by exploiting retroviral transduction of SM CD4+ T cells, methods to manipulate gene expression in early-differentiated virus-specific TFH cells are also provided. Hence, these methods will help in studies exploring the mechanism(s) underlying the early commitment of virus-specific TFH cells.


Subject(s)
CD4-Positive T-Lymphocytes , Cell Differentiation , Lymphocytic Choriomeningitis , Animals , Mice , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Flow Cytometry/methods , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/immunology , Mice, Inbred C57BL , Mice, Transgenic , T Follicular Helper Cells/immunology , T-Lymphocytes, Helper-Inducer/immunology
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124420, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38728848

ABSTRACT

As common pollutants, Cu2+ and glyphosate pose a serious threat to human health and the ecosystem. Herein, a fluorescent probe (E)-7-(diethylamino)-N'(4-(diethylamino)-2-hydroxybenzyl)-2-oxo-2H chromophore-3-carbazide (DDHC) was designed and synthesised for the sequential recognition of Cu2+ and glyphosate. DDHC has the advantages of a short synthesis path, easy-to-obtain raw materials, good anti-interference ability, and strong stability. The interaction of the DDHC-Cu2+ complexes with glyphosate allows the amino and carboxyl groups in glyphosate molecules to coordinate with Cu2+ strongly, competing for the Cu2+ in the DDHC-Cu2+ complexes and releasing the DDHC, leading to the recovery of fluorescence. The recognition was further validated through Job's plot, HRMS, and DFT calculations. In addition, the successful recovery of Cu2+ and glyphosate in different environmental water samples fully demonstrates the practical application potential of DDHC. Especially, DDHC has low cytotoxicity and can enter zebrafish and HeLa cells, rapidly reacting with Cu2+ and glyphosate in the body, generating visible fluorescence quenching and recovery phenomena, achieving real-time visual monitoring of exogenous Cu2+ and glyphosate in zebrafish and HeLa cells. The targeting and dual selectivity of DDHC greatly enhance its potential application value in the field of detection, providing important theoretical support for studying the fate of multiple pollutants in the environment.


Subject(s)
Copper , Fluorescent Dyes , Glycine , Glyphosate , Zebrafish , Glycine/analogs & derivatives , Glycine/analysis , Glycine/chemistry , Copper/analysis , Copper/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Humans , Animals , HeLa Cells , Spectrometry, Fluorescence/methods , Water Pollutants, Chemical/analysis , Herbicides/analysis , Density Functional Theory
16.
Inorg Chem ; 63(18): 8171-8179, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38655575

ABSTRACT

Although 1,10-phenanthroline has been proven to hold a strong complexing capacity for f-block elements and their derivatives have been applied in many fields, research on more highly or completely rigid phenanthroline ligands is still rare due to the challenging syntheses. Here, we reported three tetradentate ligands 2,9-di(pyridin-2-yl)-1,10-phenanthroline (L1), 12-(pyridin-2-yl)-5,6-dihydroquinolino[8,7b][1,10]phenanthroline (L2), and 5,6,11,12-tetrahydrobenzo[2,1-b:3,4-b']bis([1,10]phenanthroline) (L3) with increasing preorganization on the side chain; among which, L3 is fully preorganized. Their complexation reactions with Eu(III) were systematically investigated by electrospray ionization mass spectrometry (ESI-MS), UV-vis titrations, and single-crystal structures. It is found that all three ligands form only 1:1 M/L complexes with Eu(III). The single-crystal structures revealed that the three ligands hold similar coordination modes, while their stability constants determined by UV-vis titrations were L3 (4.80 ± 0.01) > L2 (4.38 ± 0.01) > L1 (3.88 ± 0.01). This trend is supported not only by the thermodynamic stability of rigid ligands compared to free ligands but also by the conclusion that rigid ligands exhibit faster reaction rates (lower energy barrier) than free ligands kinetically. This work is helpful in providing theoretical guidance for the subsequent development of highly preorganized chelating ligands with strong coordination ability and high selectivity for f-block elements.

17.
Article in English | MEDLINE | ID: mdl-38632039

ABSTRACT

The mutant strain Halomonas bluephagenesis (TDH4A1B5P) was found to produce PHA under low-salt, non-sterile conditions, but the yield was low. To improve the yield, different nitrogen sources were tested. It was discovered that urea was the most effective nitrogen source for promoting growth during the stable stage, while ammonium sulfate was used during the logarithmic stage. The growth time of H. bluephagenesis (TDH4A1B5P) and its PHA content were significantly prolonged by the presence of sulfate ions. After 64 hr in a 5-L bioreactor supplemented with sulfate ions, the dry cell weight (DCW) of H. bluephagenesis weighed 132 g/L and had a PHA content of 82%. To promote the growth and PHA accumulation of H. bluephagenesis (TDH4A1B5P), a feeding regimen supplemented with nitrogen sources and sulfate ions with ammonium sodium sulfate was established in this study. The DCW was 124 g/L, and the PHA content accounted for 82.3% (w/w) of the DCW, resulting in a PHA yield of 101 g/L in a 30-L bioreactor using the optimized culture strategy. In conclusion, stimulating H. bluephagenesis (TDH4A1B5P) to produce PHA is a feasible and suitable strategy for all H. bluephagenesis.


Subject(s)
Bioreactors , Culture Media , Halomonas , Nitrogen , Polyhydroxyalkanoates , Sulfates , Halomonas/metabolism , Halomonas/growth & development , Halomonas/genetics , Sulfates/metabolism , Polyhydroxyalkanoates/metabolism , Culture Media/chemistry , Nitrogen/metabolism , Ammonium Sulfate/metabolism , Urea/metabolism , Fermentation
18.
Int J Biol Macromol ; 267(Pt 1): 131575, 2024 May.
Article in English | MEDLINE | ID: mdl-38614178

ABSTRACT

Wound healing is a dynamic and complex process, it's urgent to develop new wound dressings with excellent performance to promote wound healing at the different stages. Here, a novel composite hydrogel dressing composed by silver nanoparticles (AgNPs) impregnated adenine-modified chitosan (CS-A) and octafunctionalized polyhedral oligomeric silsesquioxane (POSS) of benzaldehyde-terminated polyethylene glycol (POSS-PEG-CHO) solution was presented to solve the problem of wound infection. Modification of chitosan with adenine, not only can improve the water solubility of chitosan, but also introduce bioactive substances to promote cell proliferation. CS-A and POSS-PEG-CHO were cross-linked by Schiff-base reaction to form the injectable self-healing hydrogel. On this basis, AgNPs were added into the hydrogel, which endows the hydrogel with better antibacterial activity. Moreover, this kind of hydrogel exhibits excellent cell proliferation properties. Studies demonstrated that the hydrogel can significantly accelerate the closure of infected wounds. The histological analysis and immunofluorescence staining demonstrated that the wounds treated with the composite hydrogel exhibited fewer inflammatory cells, more collagen deposition and angiogenesis, faster regeneration of epithelial tissue. Above all, adenine-modified chitosan composite hydrogel with AgNPs loaded was considered as a dressing material with great application potential for promoting the healing of infected wounds.


Subject(s)
Adenine , Anti-Bacterial Agents , Cell Proliferation , Chitosan , Hydrogels , Metal Nanoparticles , Polyethylene Glycols , Silver , Wound Healing , Chitosan/chemistry , Chitosan/pharmacology , Wound Healing/drug effects , Cell Proliferation/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polyethylene Glycols/chemistry , Silver/chemistry , Silver/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Metal Nanoparticles/chemistry , Adenine/pharmacology , Adenine/chemistry , Mice , Organosilicon Compounds/chemistry , Organosilicon Compounds/pharmacology , Rats , Humans , Wound Infection/drug therapy
19.
Chem Commun (Camb) ; 60(38): 5042-5045, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38634237

ABSTRACT

Epimers of the (1,10-phenanthroline-2,9-diyl)bis(ethyl(phenyl)phosphine oxide) (Et-Ph-BPPhen) ligand with two chiral centers (R,R/S,S and R,S) were synthesized. The configurational effects on the coordination ability and mechanism between these epimeric ligands and uranyl ions were thoroughly investigated. This work is helpful to reveal the effects of different conformations of epimeric ligands on their coordination properties.

20.
J Control Release ; 370: 210-229, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38648955

ABSTRACT

Chronic skin wounds, especially infected ones, pose a significant clinical challenge due to their increasing incidence and poor outcomes. The deteriorative microenvironment in such wounds, characterized by reduced extracellular matrix, impaired angiogenesis, insufficient neurogenesis, and persistent bacterial infection, has prompted the exploration of novel therapeutic strategies. In this study, we developed an injectable multifunctional hydrogel (GEL/BG@Cu + Mg) incorporating Gelatin-Tannic acid/ N-hydroxysuccinimide functionalized polyethylene glycol and Bioactive glass doped with copper and magnesium ions to accelerate the healing of infected wounds. The GEL/BG@Cu + Mg hydrogel composite demonstrates good biocompatibility, degradability, and rapid formation of a protective barrier to stop bleeding. Synergistic bactericidal effects are achieved through the photothermal properties of BG@Cu + Mg and sustained copper ions release, with the latter further promoting angiogenesis. Furthermore, the hydrogel enhances neurogenesis by stimulating axons and Schwann cells in the wound bed through the beneficial effects of magnesium ions. Our results demonstrate that the designed novel multifunctional hydrogel holds tremendous promise for treating infected wounds and allowing regenerative neurogenesis at the wound site, which provides a viable alternative for further improving clinical outcomes.


Subject(s)
Anti-Bacterial Agents , Bandages , Copper , Hydrogels , Neurogenesis , Wound Healing , Animals , Neurogenesis/drug effects , Hydrogels/chemistry , Hydrogels/administration & dosage , Wound Healing/drug effects , Copper/chemistry , Copper/administration & dosage , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Glass/chemistry , Magnesium/chemistry , Magnesium/administration & dosage , Male , Polyethylene Glycols/chemistry , Mice , Staphylococcus aureus/drug effects , Wound Infection/drug therapy , Rats, Sprague-Dawley , Gelatin/chemistry , Humans
SELECTION OF CITATIONS
SEARCH DETAIL