Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 386
1.
Article En | MEDLINE | ID: mdl-38709637

OBJECTIVES: Stiff shoulder, including primary and secondary types, poses diagnostic challenges due to vague definitions and criteria. This study evaluates the diagnostic potential of ultrasound-measured axillary recess (AR) thickness in shoulder stiffness. DESIGNS: In this cross-sectional study, 35 patients with unilateral shoulder stiffness were assessed. AR thickness was measured using high-resolution ultrasound. Parameters like passive range of motion (PROM), Numerical Rating Scale (NRS), and Constant-Murley (CM) score were evaluated to find correlations with AR thickness. RESULTS: The average age was 50.7 years, and mean BMI was 22.7. AR thickness in stiff shoulders (average 3.19 mm) was significantly higher than in unaffected shoulders (average 1.93 mm, p < 0.001). A cutoff of 3.0 mm for AR thickness yielded 73.3% sensitivity and 84.6% specificity for primary stiffness; 2.6 mm cutoff resulted in 57.9% sensitivity and 88.2% specificity for secondary stiffness. Significant correlations were found between AR thickness and PROM, especially in shoulder external rotation and extension. CONCLUSION: AR thickness measured by ultrasound might serve as a valuable diagnostic and evaluation parameter in shoulder stiffness.

2.
Nat Commun ; 15(1): 4535, 2024 May 28.
Article En | MEDLINE | ID: mdl-38806516

Cryptophyte algae are an evolutionarily distinct and ecologically important group of photosynthetic unicellular eukaryotes. Photosystem II (PSII) of cryptophyte algae associates with alloxanthin chlorophyll a/c-binding proteins (ACPs) to act as the peripheral light-harvesting system, whose supramolecular organization is unknown. Here, we purify the PSII-ACPII supercomplex from a cryptophyte alga Chroomonas placoidea (C. placoidea), and analyze its structure at a resolution of 2.47 Å using cryo-electron microscopy. This structure reveals a dimeric organization of PSII-ACPII containing two PSII core monomers flanked by six symmetrically arranged ACPII subunits. The PSII core is conserved whereas the organization of ACPII subunits exhibits a distinct pattern, different from those observed so far in PSII of other algae and higher plants. Furthermore, we find a Chl a-binding antenna subunit, CCPII-S, which mediates interaction of ACPII with the PSII core. These results provide a structural basis for the assembly of antennas within the supercomplex and possible excitation energy transfer pathways in cryptophyte algal PSII, shedding light on the diversity of supramolecular organization of photosynthetic machinery.


Cryoelectron Microscopy , Cryptophyta , Photosystem II Protein Complex , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/chemistry , Cryptophyta/metabolism , Chlorophyll/metabolism , Chlorophyll Binding Proteins/metabolism , Chlorophyll Binding Proteins/chemistry , Protein Multimerization , Chlorophyll A/metabolism , Chlorophyll A/chemistry , Models, Molecular , Light-Harvesting Protein Complexes/metabolism , Light-Harvesting Protein Complexes/chemistry
3.
Anim Nutr ; 17: 376-386, 2024 Jun.
Article En | MEDLINE | ID: mdl-38812494

In markets for beef and sheep meat, an appropriate level of intramuscular fat (IMF) is highly desirable for meat-eating quality, but strategies to improve it usually lead to an undesirable excess in carcase fat, presenting a major challenge to livestock producers. To solve this problem, we need to understand the partitioning of fat among the major fat depots: IMF, subcutaneous fat (SCF) and visceral fat (VF). In most genotypes of cattle and sheep, the rate of accretion is lower for IMF than for SCF and VF, so genetic selection for a high level of IMF, or the use of an increased dietary energy supply to promote IMF deposition, will increase overall fatness and feed costs. On the other hand, feeding postnatal calves with excessive concentrates promotes IMF deposition, so a nutritional strategy is feasible. With genetic strategies, several problems arise: 1) positive genetic correlations between IMF, SCF and VF differ among genotypes in both cattle and sheep; 2) genotypes appear to have specific, characteristic rates of accretion of IMF during periods of growth and fattening; 3) most breeds of cattle and sheep naturally produce meat with relatively low levels of IMF, but IMF does vary substantially among individuals and breeds so progress is possible through accurate measurement of IMF. Therefore, an essential prerequisite for selection will be knowledge of the genetic correlations and fat accretion rates for each genotype. Currently, selection for IMF is based on existing technology that directly measures IMF in the progeny or siblings, or estimates IMF in live animals. New technology is needed to permit the simultaneous measurement of SCF and IMF in the field, thus opening up the possibility of accurate selection, particularly for fat partitioning in live animals. Specifically, there would be great value in detecting individuals with an IMF advantage at an early age so the generation interval could be shortened and genetic gain accelerated. Genetic gain would also be greatly aided if we could select for genes that control adipogenesis and lipogenesis and are also differentially expressed in the various depots.

4.
J Agric Food Chem ; 72(21): 12003-12013, 2024 May 29.
Article En | MEDLINE | ID: mdl-38748811

Insect gustatory receptors (GRs) aid in the precise identification of deterrent or stimulant compounds associated with food, mating, and egg-laying. Thus, they are promising targets for developing efficient insecticides. Here, 61 GRs in the chemosensory organs of Spodoptera litura larvae and adults were identified. Among them, SlitGR206 exhibited larval labium (LL)-specific expression characteristics. To explore the role of SlitGR206, a bacterial expression system was established to produce high-quality double-stranded RNA (dsRNA) and suppress SlitGR206 expression in LL. Subsequent behavioral assessments revealed that SlitGR206 silencing influenced larval feeding preferences and absorption. Moreover, it was found to reduce the ability of larvae to forage the five crucial host odorants. These findings demonstrate that SlitGR206 likely plays an indirect regulatory role in host recognition, consequently affecting foraging behavior. This provides a crucial foundation for the analysis of functional diversity among insect GRs and the precise development of nucleic acid pesticides in the future.


Feeding Behavior , Insect Proteins , Larva , Spodoptera , Animals , Spodoptera/metabolism , Spodoptera/physiology , Spodoptera/genetics , Spodoptera/growth & development , Larva/metabolism , Larva/growth & development , Larva/physiology , Insect Proteins/metabolism , Insect Proteins/genetics , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics
5.
Cancer Imaging ; 24(1): 62, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750551

OBJECTIVES: To develop and validate radiomics model based on computed tomography (CT) for preoperative prediction of CN0 status in patients with papillary thyroid carcinoma (PTC). METHODS: A total of 548 pathologically confirmed LNs (243 non-metastatic and 305 metastatic) two distinct hospitals were retrospectively assessed. A total of 396 radiomics features were extracted from arterial-phase CT images, where the strongest features containing the most predictive potential were further selected using the least absolute shrinkage and selection operator (LASSO) regression method. Delong test was used to compare the AUC values of training set, test sets and cN0 group. RESULTS: The Rad-score showed good discriminating performance with Area Under the ROC Curve (AUC) of 0.917(95% CI, 0.884 to 0.950), 0.892 (95% CI, 0.833 to 0.950) and 0.921 (95% CI, 868 to 0.973) in the training, internal validation cohort and external validation cohort, respectively. The test group of CN0 with a AUC of 0.892 (95% CI, 0.805 to 0.979). The accuracy was 85.4% (sensitivity = 81.3%; specificity = 88.9%) in the training cohort, 82.9% (sensitivity = 79.0%; specificity = 88.7%) in the internal validation cohort, 85.4% (sensitivity = 89.7%; specificity = 83.8%) in the external validation cohort, 86.7% (sensitivity = 83.8%; specificity = 91.3%) in the CN0 test group.The calibration curve demonstrated a significant Rad-score (P-value in H-L test > 0.05). The decision curve analysis indicated that the rad-score was clinically useful. CONCLUSIONS: Radiomics has shown great diagnostic potential to preoperatively predict the status of cN0 in PTC.


Thyroid Cancer, Papillary , Thyroid Neoplasms , Tomography, X-Ray Computed , Humans , Female , Male , Thyroid Cancer, Papillary/diagnostic imaging , Thyroid Cancer, Papillary/pathology , Tomography, X-Ray Computed/methods , Middle Aged , Retrospective Studies , Thyroid Neoplasms/diagnostic imaging , Thyroid Neoplasms/pathology , Adult , Aged , ROC Curve , Young Adult , Radiomics
6.
iScience ; 27(4): 109502, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38591009

Constitutive explorations indicate a correlation between circular RNAs (circRNAs) and cardiovascular diseases. However, the involvement of circRNAs in endothelial recuperation and in-stent restenosis (ISR) remains underexplored. CircTMEM165 has first been reported to be highly expressed in hypoxic human umbilical vein endothelial cells (HUVECs). Here, we identified that circTMEM165 was downregulated in ISR patients, inversely correlating with ISR severity. Functionally, circTMEM165 was found to be abundant in endothelial cells, inhibiting inflammation, and adhesion. Particularly, we first observed that circTMEM165 could alleviate HUVECs apoptosis and mitochondrial fission induced by lipopolysaccharide (LPS). Mechanistically, circTMEM165, as a miR-192-3p sponge, enhancing SCP2 expression, which serves as a critical regulator of HUVECs biological functions. Moreover, in vivo, circTMEM165 attenuated intimal hyperplasia and facilitated repair following classic rat carotid artery balloon injury model. These findings investigated the circTMEM165-miR-192-3p-SCP2 axis as a critical determinant of endothelial health and a potential biomarker and therapeutic target for vascular disorders.

7.
Soft Matter ; 20(16): 3508-3519, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38595302

The decellularized tilapia skin (dTS) has gained significant attention as a promising material for tissue regeneration due to its ability to provide unique structural and functional components that support cell growth, adhesion, and proliferation. However, the clinical application of dTS is limited by its low mechanical strength and rapid biodegradability. Herein, we prepare a novel RGD (arginine-glycine-aspartic acid) functionalized dTS scaffold (dTS/RGD) by using transglutaminase (TGase) crosslinking. The developed dTS/RGD scaffold possesses excellent properties, including a medium porosity of ∼59.2%, a suitable degradation rate of approximately 80% over a period of two weeks, and appropriate mechanical strength with a maximum tensile stress of ∼46.36 MPa which is much higher than that of dTS (∼32.23 MPa). These properties make the dTS/RGD scaffold ideal for promoting cell adhesion and proliferation, thereby accelerating skin wound healing in a full-thickness skin defect model. Such an enzymatic cross-linking strategy provides a favorable microenvironment for wound healing and holds great potential for application in skin regeneration engineering.


Oligopeptides , Regeneration , Skin , Tilapia , Tissue Scaffolds , Transglutaminases , Animals , Tissue Scaffolds/chemistry , Tilapia/metabolism , Transglutaminases/metabolism , Transglutaminases/chemistry , Oligopeptides/chemistry , Oligopeptides/metabolism , Wound Healing , Cell Proliferation , Tissue Engineering , Porosity , Mice , Cell Adhesion , Humans
8.
Environ Sci Technol ; 58(18): 7968-7976, 2024 May 07.
Article En | MEDLINE | ID: mdl-38680115

Nitrogen oxide (NOx) emissions from heavy-duty diesel vehicles (HDDVs) have adverse effects on human health and the environment. On-board monitoring (OBM), which can continuously collect vehicle performance and NOx emissions throughout the operation lifespan, is recognized as the core technology for future vehicle in-use compliance, but its large-scale application has not been reported. Here, we utilized OBM data from 22,520 HDDVs in China to evaluate their real-world NOx emissions. Our findings showed that China VI HDDVs had a 73% NOx emission reduction compared with China V vehicles, but a considerable proportion still faced a significant risk of higher NOx emissions than the corresponding limits. The unsatisfactory efficiency of the emission treatment system under disadvantageous driving conditions (e.g., low speed or ambient temperature) resulted in the incompliance of NOx emissions, especially for utility vehicles (sanitation/garbage trucks). Furthermore, the observed intertrip and seasonal variability of NOx emissions demonstrated the need for a long-term continuous monitoring protocol instead of instantaneous evaluation for the OBM. With both functions of emission monitoring and malfunction diagnostics, OBM has the potential to accurately verify the in-use compliance status of large-scale HDDVs and discern the responsibility of high-emitting activities from manufacturers, vehicle operators, and driving conditions.


Air Pollutants , Environmental Monitoring , Nitrogen Oxides , Vehicle Emissions , Vehicle Emissions/analysis , Environmental Monitoring/methods , Nitrogen Oxides/analysis , Air Pollutants/analysis , China
9.
J Adv Res ; 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38621622

INTRODUCTION: Necroptosis triggered by H2O2 is hypothesized to be a critical factor in the rupture of atherosclerotic plaques, which may precipitate acute cardiovascular events. Nevertheless, the specific regulatory molecules of this development remain unclear. We aims to elucidate a mechanism from the perspective of circular RNA. OBJECTIVES: There are few studies on circRNA in VSMCs necroptosis. The objective of our research is to shed light on the intricate roles that circHIPK3 plays in the process of necroptosis in VSMCs and the development of atherosclerotic plaques that are prone to rupture. Our study elucidates the specific molecular mechanisms by which circHIPK3 regulates necroptosis and atherosclerotic vulnerable plaque formation through targeted proteins. Identifying this mechanism at the cellular level offers a molecular framework for understanding plaque progression and stability regulation, as well as a potential biomarker for the prognosis of susceptible atherosclerotic plaques. METHODS: We collected clinical vascular tissue for HE staining and Masson staining to determine the presence and stability of plaques. Then, NCBI database was used to screen out circRNA with elevated expression level in plaque tissue, and the up-regulated circRNA, circHIPK3, was verified by qRT-PCR and FISH. Further, we synthesized circHIPK3's small interference sequence and overexpressed plasmid in vitro, and verified its regulation effect on necroptosis of VSMCs under physiological and pathological conditions by WB, qRT-PCR and PI staining. Through RNA pull down, mass spectrometry and RNA immunoprecipitation, DRP1 was identified as circHIPK3 binding protein and was positively regulated by circHIPK3. Meanwhile, on the basis of silencing of DRP1, the regulation of circHIPK3 on necroptosis is verified to be mediated by DRP1. Finally, we validated the regulation of circHIPK3 on vulnerable plaque formation in ApoE-/- mice. RESULTS: We investigated that circHIPK3 was highly expressed in vulnerable plaques, and the increase in expression level promoted H2O2 induced necroptosis of VSMCs. CircHIPK3 targeted the protein DRP1, leading to an elevation in mitochondrial division rate, resulting in increased reactive oxygen species and impaired mitochondrial function, ultimately leading to necroptosis of VSMCs and vulnerable plaque formation. CONCLUSION: CircHIPK3 interact with DRP1 involve in H2O2 induced Mitochondrial damage and necroptosis of VSMCs, and Silencing circHIPK3 in vivo can reduce atherosclerotic vulnerable plaque formation. Our research findings may have applications in providing diagnostic biomarkers for vulnerable plaques.

10.
Plant Biotechnol J ; 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38548388

Carotenoids are indispensable to plants and critical components of the human diet. The carotenoid metabolic pathway is conserved across plant species, but our understanding of the genetic basis of carotenoid variation remains limited for the seeds of most cereal crops. To address this issue, we systematically performed linkage and association mapping for eight carotenoid traits using six recombinant inbred line (RIL) populations. Single linkage mapping (SLM) and joint linkage mapping (JLM) identified 77 unique additive QTLs and 104 pairs of epistatic QTLs. Among these QTLs, we identified 22 overlapping hotspots of additive and epistatic loci, highlighting the important contributions of some QTLs to carotenoid levels through additive or epistatic mechanisms. A genome-wide association study based on all RILs detected 244 candidate genes significantly associated with carotenoid traits, 23 of which were annotated as carotenoid pathway genes. Effect comparisons suggested that a small number of loci linked to pathway genes have substantial effects on carotenoid variation in our tested populations, but many loci not associated with pathway genes also make important contributions to carotenoid variation. We identified ZmPTOX as the causal gene for a QTL hotspot (Q10/JLM10/GWAS019); this gene encodes a putative plastid terminal oxidase that produces plastoquinone-9 used by two enzymes in the carotenoid pathway. Natural variants in the promoter and second exon of ZmPTOX were found to alter carotenoid levels. This comprehensive assessment of the genetic mechanisms underlying carotenoid variation establishes a foundation for rewiring carotenoid metabolism and accumulation for efficient carotenoid biofortification.

11.
Eye (Lond) ; 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38555400

BACKGROUND/OBJECTIVES: Tessellated fundus can exist in normal healthy eyes. This study aims to evaluate the occurrence and influencing factors of tessellated fundus in preschool children aged 3-6 years. SUBJECTS/METHODS: This kindergarten-based cross-sectional study included 1716 children with an age range of 3-6 years. All participants underwent a comprehensive eye examination and a questionnaire. According to the number of quadrants occupied by tessellated fundus around the optic disc in fundus photographs, it was divided into four grades. RESULTS: 600 (35.0%) children had peripapillary tessellation. According to the spherical equivalent (SE), the subjects were divided into three groups: Hyperopia group (SE > + 0.75D, n = 1194);Pre-myopia group (-0.50D < SE ≤ + 0.75D, n = 455); Myopia group (SE ≤ -0.50D, n = 67). The proportion of peripapillary tessellated fundus was 33.0%, 38.0%, 50.7% respectively. According to the regression analysis, in the non-myopia group (Pre-myopia group and Hyperopia group), the occurrence of peripapillary tessellated fundus was associated with longer axial length (OR, 1.566; 95% CI: 1.229-1.996, p < 0.001) and larger corneal radius of curvature (OR, 1.837; 95% CI: 1.006-3.354, p = 0.048). However, in Pre-myopia group, the corneal radius of curvature was not associated with the occurrence of peripapillary tessellated fundus (p = 0.830). In Hyperopia group, the corneal radius of curvature was associated with the occurrence of peripapillary tessellated fundus (OR, 2.438; 95% CI: 1.160-5.122, p = 0.019). CONCLUSIONS: The occurrence of peripapillary tessellated fundus is more than 30% in 3-6 year old preschool children. Tessellated fundus can also occur in non-myopic children, and is related to the length of axial length and large radius of corneal curvature.

12.
Occup Ther Int ; 2024: 1088666, 2024.
Article En | MEDLINE | ID: mdl-38528963

Occupational therapy is a profession with origins rooted in Western values. As culture plays an important role in shaping theory and practice, the curriculum design of academic programs that train future rehabilitation professionals should reflect the local context. As part of an international partnership, a dual-degree graduate program in occupational therapy was established between a Chinese and an American university. A team composed of members from both institutions collaborated on culturally adapting an entry-level master's program in occupational therapy for China, based on a U.S. program, which welcomed its first cohort in September 2019. This article details the timeline and process of program design and adaptation from conception, through implementation to evaluation and revision, with the aim of offering a framework for curriculum adaptation of other academic programs in the U.S. and internationally. The adapted curriculum includes the program mission, vision, and philosophy; the curriculum model with program outcomes and threads; the program scope and sequence; materials and resources; and course-specific objectives, learning activities, and assessments. The authors also share lessons learned through this experience of international collaboration as well as next steps for program evaluation and sustainability. The detailed overview of this international collaboration offers suggestions for individuals and institutions seeking to develop global partnerships and adapt curricula across cultural contexts.


Occupational Therapy , Humans , Occupational Therapy/education , Curriculum , Program Evaluation , China
13.
Sci Total Environ ; 927: 172002, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38547986

The Yellow River, renowned as the most sediment-laden river globally, grapples with sediment deposition issues compromising reservoir functionality and elevating downstream riverbeds, posing threats to human life and property safety. In response, the Water-Sediment Regulation Scheme (WSRS) has been innovatively implemented to address these challenges. While effectively mitigating sediment deposition, WSRS has concurrently disrupted the equilibrium of the estuarine ecosystem. This paper addresses the understudied but crucial topic of the interannual impact of WSRS on the estuarine ecosystem. Drawing upon physical, chemical, and biological data gathered through field surveys conducted before, during, and after WSRS from 2011 to 2022, the analysis delves into the interannual changes in the estuarine environment, fish eggs and larvae abundance, and species diversity under the influence of WSRS. The findings reveal an interannual decreasing trend in terrestrial material input due to WSRS, juxtaposed with an interannual increasing trend in fish eggs and larvae around the estuary, as well as the species diversity index. Notably, these trends became more pronounced post-2014. Compared to pre-2014, nutrient concentrations experienced a ~20 % decrease, chlorophyll-a concentration increased by 44 %, fish eggs proliferated approximately 1 time, and the species diversity index transitioned from a declining trend to an ascending trajectory. After 12 years of continuous WSRS implementation, the impact on the estuarine ecosystem has demonstrably diminished. This research aims to furnish reference experience and scientific basis for water and sediment regulation in major rivers around the world in terms of estuarine ecology.


Ecosystem , Environmental Monitoring , Estuaries , Geologic Sediments , Rivers , Rivers/chemistry , Geologic Sediments/chemistry , Animals , Fishes , China , Biodiversity
14.
Mol Immunol ; 169: 50-65, 2024 May.
Article En | MEDLINE | ID: mdl-38493581

Macrophages play a crucial role in the inflammatory response following sciatic nerve injury. Studies have demonstrated that C-X-C motif chemokine (CXCL) 1 recruit macrophages by binding to C-X-C chemokine receptor (CXCR) 2 and participates in the inflammatory response of various diseases. Based on these findings, we aimed to explore the role of the CXCL1-CXCR2 axis in the repair process after peripheral nerve injury. Initially, we simulated sciatic nerve injury and observed an increased expression of CXCL1 and CXCR2 in the nerves of the injury group. Both in vivo and in vitro experiments confirmed that the heightened CXCL1 expression occurs in Schwann cells and is secreted, while the elevated CXCR2 is expressed by recruited macrophages. In addition, in vitro experiments demonstrated that the binding of CXCL1 to CXCR2 can activate the NLRP3 inflammasome and promote the production of interleukin-1 beta (IL-1ß) in macrophages. However, after mice were subjected to sciatic nerve injury, the number of macrophages and the expression of inflammatory factors in the sciatic nerve were reduced following treatment with the CXCR2 inhibitor SB225002. Simultaneously, we evaluated the sciatic nerve function index, the expression of p75 neurotrophic factor receptor (p75NTR), and myelin proteins, and all of these results were improved with the use of SB225002. Thus, our results suggest that after sciatic nerve injury, the CXCL1-CXCR2 axis mediates the inflammatory response by promoting the recruitment and activation of macrophages, which is detrimental to the repair of the injured nerves. In contrast, treatment with SB225002 promotes the repair of injured sciatic nerves.


Chemokine CXCL1 , Peripheral Nerve Injuries , Receptors, Interleukin-8B , Animals , Mice , Chemokine CXCL1/metabolism , Macrophages/metabolism , Phenylurea Compounds/pharmacology , Sciatic Nerve
15.
Animals (Basel) ; 14(5)2024 Feb 21.
Article En | MEDLINE | ID: mdl-38473062

The number of vertebrae is a crucial economic trait that can significantly impact the carcass length and meat production in animals. However, our understanding of the quantitative trait loci (QTLs) and candidate genes associated with the vertebral number in sheep (Ovis aries) remains limited. To identify these candidate genes and QTLs, we collected 73 Ujimqin sheep with increased numbers of vertebrae (T13L7, T14L6, and T14L7) and 23 sheep with normal numbers of vertebrae (T13L6). Through high-throughput genome resequencing, we obtained a total of 24,130,801 effective single-nucleotide polymorphisms (SNPs). By conducting a selective-sweep analysis, we discovered that the most significantly selective region was located on chromosome 7. Within this region, we identified several genes, including VRTN, SYNDIG1L, LTBP2, and ABCD4, known to regulate the spinal development and morphology. Further, a genome-wide association study (GWAS) performed on sheep with increased and normal vertebral numbers confirmed that ABCD4 is a candidate gene for determining the number of vertebrae in sheep. Additionally, the most significant SNP on chromosome 7 was identified as a candidate QTL. Moreover, we detected two missense mutations in the ABCD4 gene; one of these mutations (Chr7: 89393414, C > T) at position 22 leads to the conversion of arginine (Arg) to glutamine (Gln), which is expected to negatively affect the protein's function. Notably, a transcriptome expression profile in mouse embryonic development revealed that ABCD4 is highly expressed during the critical period of vertebral formation (4.5-7.5 days). Our study highlights ABCD4 as a potential major gene influencing the number of vertebrae in Ujimqin sheep, with promising prospects for future genome-assisted breeding improvements in sheep.

16.
Front Microbiol ; 15: 1355028, 2024.
Article En | MEDLINE | ID: mdl-38435699

This study investigated the spatiotemporal distribution of the phytoplankton in the coral habitat of Dongshan Bay (China), along with critical factors affecting the distribution, during June, August, and December 2022. Phytoplankton abundance in Dongshan Bay exhibited considerably temporal variation, peaking in June 2022, gradually decreasing thereafter, and reaching its lowest point in December 2022. The abundance of bottom-layer phytoplankton consistently exceeded that of the surface layer throughout all seasons. The average phytoplankton abundance in the coral habitat of Dongshan Bay was lower than that in non-coral habitat areas. Fluctuations in the Zhangjiang River and coastal upwelling influenced the diversity and community structure of the phytoplankton. Critical factors causing spatiotemporal variability in phytoplankton community structure included nutrient concentrations and seawater temperature. Nutrients played key roles in influencing various phytoplankton groups. Dominant diatom species, such as Thalassionema nitzschioides and Thalassiosira diporocyclus, were positively correlated with ammonia nitrogen, seawater salinity, coral cover, and the number of coral species present. In winter, Calanus sinicus exhibited a negative correlation with harmful algal bloom species. Additionally, it was found that both in the coral habitat and surrounding open sea, currents, nutrients, and zooplankton may play crucial roles in determining the spatiotemporal variability in the phytoplankton community structure.

17.
Gene ; 910: 148310, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38401832

With the change in diet structure, individuals prefer to consume mutton with less fat. However, sheep tail has a lot of fat. We identified a breed of low-fat short-tailed sheep (i.e., Hulunbuir short-tailed sheep). It is necessary to develop an animal model that can promote research on the potential mechanisms of the short-tail phenotype in sheep, which results from the TBXT gene c.G334T mutation. To create animal models, we selected mice as experimental animals. Mouse embryos lacking the TBXT protein, which crucially regulates mouse embryonic development, cannot develop normally. We utilized CRISPR/Cas9 gene editing technology to generate site-specific mutation (c.G334T) in the TBXT gene of mice, and found that the mouse TBXT mutation (c.G334T) leads to a short-tail phenotype. Furthermore, we investigated the interaction between TBXT and Wnt signaling pathways. The expressions of TBXT, Axin2, Dkk1, Wnt3, Wnt3a, and Wnt5a were discovered to be significantly different between mutant embryos and wild embryos by obtaining mouse embryos at various developmental stages and examining the expression relationship between the TBXT and Wnt signaling pathway-related components in all of these embryos. Therefore, as a transcription factor, TBXT regulates the expression of the aforementioned Wnt signaling pathway components by forming a regulatory network for the normal development of mouse embryos. This study enriches the research on the functional role of the TBXT in the development of mouse embryos and the mechanism by which the short-tailed phenotype in sheep develops.


CRISPR-Cas Systems , Tail , Pregnancy , Female , Mice , Animals , Sheep/genetics , Embryonic Development/genetics , Phenotype , Gene Editing/methods
18.
J Clin Monit Comput ; 2024 Feb 17.
Article En | MEDLINE | ID: mdl-38368302

Lung recruitment manoeuvres (RMs) during mechanical ventilation may reduce atelectasis, however, the optimal recruitment strategy for patients undergoing thoracic surgery remains unknown. Our study was designed to investigate whether ultrasound-guided lung RMs is superior to conventional RMs in reducing perioperative atelectasis during thoracic surgery with one-lung ventilation. We conducted a randomised controlled clinical trial from August 2022 to September 2022. Sixty patients scheduled for video-assisted thoracoscopic surgery (VATS) under general anaesthesia were enrolled. Subjects were randomly divided into the ultrasound-guided RMs group (manual inflation guided by lung ultrasound) or conventional RMs group (manual inflation with 30 cmH2O pressure). Lung ultrasound were performed at three predefined time points (1 min after anaesthetic induction; after RMs at the end of surgery; before discharge from postanesthesia care unit [PACU]). The primary outcome was lung ultrasound score before discharge from the PACU after extubation. In the early postoperative period, lung aeration deteriorated in both groups even after lung RMs. However, ultrasound-guided lung RMs had significantly lower lung ultrasound scores when compared with conventional RMs in bilateral lungs (2.0 [0.8-4.0] vs. 8.0 [3.8-10.3], P < 0.01) at the end of surgery, which remained before patients discharged from the PACU. Accordingly, the lower incidence of atelectasis was found in ultrasound-guided RMs group than in conventional RMs group (7% vs. 53%; P < 0.01) at the end of surgery. Ultrasound-guided RMs is superior to conventional RMs in improving lung aeration and reducing the incidence of lung atelectasis at early postoperative period in patients undergoing VATS. The study protocol was approved by the Institutional Review Board of the Fudan University Shanghai Cancer Center (No. 220,825,810; date of approval: August 5, 2022) and registered on Chinese Clinical Trial Registry (registration number: ChiCTR2200062761).

19.
Proc Natl Acad Sci U S A ; 121(7): e2315476121, 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38319970

Marine photosynthetic dinoflagellates are a group of successful phytoplankton that can form red tides in the ocean and also symbiosis with corals. These features are closely related to the photosynthetic properties of dinoflagellates. We report here three structures of photosystem I (PSI)-chlorophylls (Chls) a/c-peridinin protein complex (PSI-AcpPCI) from two species of dinoflagellates by single-particle cryoelectron microscopy. The crucial PsaA/B subunits of a red tidal dinoflagellate Amphidinium carterae are remarkably smaller and hence losing over 20 pigment-binding sites, whereas its PsaD/F/I/J/L/M/R subunits are larger and coordinate some additional pigment sites compared to other eukaryotic photosynthetic organisms, which may compensate for the smaller PsaA/B subunits. Similar modifications are observed in a coral symbiotic dinoflagellate Symbiodinium species, where two additional core proteins and fewer AcpPCIs are identified in the PSI-AcpPCI supercomplex. The antenna proteins AcpPCIs in dinoflagellates developed some loops and pigment sites as a result to accommodate the changed PSI core, therefore the structures of PSI-AcpPCI supercomplex of dinoflagellates reveal an unusual protein assembly pattern. A huge pigment network comprising Chls a and c and various carotenoids is revealed from the structural analysis, which provides the basis for our deeper understanding of the energy transfer and dissipation within the PSI-AcpPCI supercomplex, as well as the evolution of photosynthetic organisms.


Anthozoa , Dinoflagellida , Animals , Anthozoa/metabolism , Light-Harvesting Protein Complexes/metabolism , Dinoflagellida/metabolism , Harmful Algal Bloom , Symbiosis , Cryoelectron Microscopy , Photosystem I Protein Complex/metabolism , Chlorophyll/metabolism
20.
Int Immunopharmacol ; 129: 111601, 2024 Mar 10.
Article En | MEDLINE | ID: mdl-38350354

Understanding the mechanisms of resistance of hepatocellular carcinoma (HCC) to targeted therapies and immune checkpoint blockade is critical for the development of new combination therapies and improving patient survival. Here, we found that in HCC, anti-programmed cell death 1 ligand 1 (PD-L1) therapy reduces liver cancer growth, but the tumors eventually become resistant to continued therapy. Experimental analyses shows that the infiltration of pathogenic T helper 17 (pTh17) cells increases in drug-resistant HCC, and pTh17 cells secrete interleukin-17A (IL-17A), which promotes the expression of PD-L1 on the surface of HCC cells and produces resistance to anti-PD-L1 therapy. Anti-IL-17A combined with PD-L1 blockade significantly increased the infiltration of cytotoxic CD8+ T cells expressing high levels of interferon-γ and reduced treatment resistance in HCC. These results support the combination of anti-PD-L1 and anti-IL-17A as a novel strategy to induce effective T cell-mediated anti-tumor immune responses.


Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , CD8-Positive T-Lymphocytes , B7-H1 Antigen/metabolism , Th17 Cells/metabolism , Immunotherapy/methods , Antibodies, Monoclonal/metabolism , Tumor Microenvironment
...