Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 15: 1359801, 2024.
Article in English | MEDLINE | ID: mdl-38371934

ABSTRACT

[This corrects the article DOI: 10.3389/fmicb.2023.1120048.].

2.
Front Microbiol ; 14: 1120048, 2023.
Article in English | MEDLINE | ID: mdl-36937289

ABSTRACT

Giardia duodenalis, an important flagellated noninvasive protozoan parasite, infects the upper small intestine and causes a disease termed giardiasis globally. Few members of the heat shock protein (HSP) family have been shown to function as potential defenders against microbial pathogens, while such information is lacking for Giardia. Here we initially screened and indicated that in vitro Giardia challenge induced a marked early upregulation of HSP70 in intestinal epithelial cells (IECs). As noted previously, apoptotic resistance, nitric oxide (NO)-dependent cytostatic effect and parasite clearance, and epithelial barrier integrity represent effective anti-Giardia host defense mechanisms. We then explored the function of HSP70 in modulating apoptosis, NO release, and tight junction (TJ) protein levels in Giardia-IEC interactions. HSP70 inhibition by quercetin promoted Giardia-induced IEC apoptosis, viability decrease, NO release reduction, and ZO-1 and occludin downregulation, while the agonist celastrol could reverse these Giardia-evoked effects. The results demonstrated that HSP70 played a previously unrecognized and important role in regulating anti-Giardia host defense via attenuating apoptosis, promoting cell survival, and maintaining NO and TJ levels. Owing to the significance of apoptotic resistance among those defense-related factors mentioned earlier, we then elucidated the anti-apoptotic mechanism of HSP70. It was evident that HSP70 could negatively regulate apoptosis in an intrinsic way via direct inhibition of Apaf-1 or ROS-Bax/Bcl-2-Apaf-1 axis, and in an extrinsic way via cIAP2-mediated inhibition of RIP1 activity. Most importantly, it was confirmed that HSP70 exerted its host defense function by downregulating apoptosis via Toll-like receptor 4 (TLR4) activation, upregulating NO release via TLR4/TLR2 activation, and upregulating TJ protein expression via TLR2 activation. HSP70 represented a checkpoint regulator providing the crucial link between specific TLR activation and anti-Giardia host defense responses. Strikingly, independent of the checkpoint role of HSP70, TLR4 activation was proven to downregulate TJ protein expression, and TLR2 activation to accelerate apoptosis. Altogether, this study identified HSP70 as a potentially vital defender against Giardia, and revealed its correlation with specific TLR activation. The clinical importance of HSP70 has been extensively demonstrated, while its role as an effective therapeutic target in human giardiasis remains elusive and thus needs to be further clarified.

3.
Front Immunol ; 14: 1120996, 2023.
Article in English | MEDLINE | ID: mdl-36999034

ABSTRACT

Giardia duodenalis, a cosmopolitan noninvasive protozoan parasite of zoonotic concern and public health importance, infects the upper portions of the small intestine and causes one of the most common gastrointestinal diseases globally termed giardiasis, especially in situations lacking safe drinking water and adequate sanitation services. The pathogenesis of giardiasis is complex and involves multiple factors from the interaction of Giardia and intestinal epithelial cells (IECs). Autophagy is an evolutionarily conserved catabolic pathway that involves multiple pathological conditions including infection. Thus far, it remains uncertain if autophagy occurs in Giardia-infected IECs and if autophagic process is associated with the pathogenic factors of giardiasis, such as tight junction (TJ) barrier defects and nitric oxide (NO) release of IECs. Here Giardia-in vitro exposed IECs showed upregulation of a series of autophagy-related molecules, such as LC3, Beclin1, Atg7, Atg16L1, and ULK1, and downregulation of p62 protein. IEC autophagy induced by Giardia was further assessed by using autophagy flux inhibitor, chloroquine (CQ), with the ratio of LC3-II/LC3-I significantly increased and downregulated p62 significantly reversed. Inhibition of autophagy by 3-methyladenine (3-MA) rather than CQ could markedly reverse Giardia-induced downregulation of TJ proteins (claudin-1, claudin-4, occludin, and ZO-1; also known as epithelial cell markers) and NO release, implying the involvement of early-stage autophagy in TJ/NO regulation. We subsequently confirmed the role of ROS-mediated AMPK/mTOR signaling in modulating Giardia-induced autophagy, TJ protein expression, and NO release. In turn, impairment of early-stage autophagy by 3-MA and late-stage autophagy by CQ both exhibited an exacerbated effect on ROS accumulation in IECs. Collectively, we present the first attempt to link the occurrence of IEC autophagy with Giardia infection in vitro, and provides novel insights into the contribution of ROS-AMPK/mTOR-dependent autophagy to Giardia infection-related downregulation of TJ protein and NO levels.


Subject(s)
Giardiasis , Humans , Enterocytes/metabolism , Tight Junction Proteins/metabolism , AMP-Activated Protein Kinases/metabolism , Reactive Oxygen Species , Nitric Oxide , TOR Serine-Threonine Kinases/metabolism , Autophagy
4.
mBio ; 14(2): e0315222, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36786613

ABSTRACT

Enterohemorrhagic Escherichia coli (EHEC) is a highly adaptive pathogen and has acquired diverse genetic elements, such as genomic islands and prophages, via horizontal gene transfer to promote fitness in vivo. Two-component signaling systems (TCSs) allow bacteria to sense, respond to, and adapt to various environments. This study identified a putative two-component signaling system composed of the histidine kinase EDL5436 (renamed LmvK) and the response regulator EDL5428 (renamed LmvR) in EHEC. lmvK and lmvR along with EDL5429 to EDL5434 (EDL5429-5434) between them constitute the OI167 genomic island and are highly associated with the EHEC pathotype. EDL5429-5434 encode transporters and metabolic enzymes that contribute to growth on mannose and are directly upregulated by LmvK/LmvR in the presence of mannose, as revealed by quantitative PCR (qPCR) and DNase I footprint assays. Moreover, LmvR directly activates the expression of the type III secretion system in response to mannose and promotes the formation of attaching and effacing lesions on HeLa cells. Using human colonoid and mouse infection models, we show that lmvK and lmvR contributed greatly to adherence and microcolony (MC) formation ex vivo and colonization in vivo. Finally, RNA sequencing and chromatin immunoprecipitation coupled with sequencing analyses identified additional direct targets of LmvR, most of which are involved in metabolism. Given that mannose is a mucus-derived sugar that induces virulence and is preferentially used by EHEC during infection, our data revealed a previously unknown mechanism by which EHEC recognizes the host metabolic landscape and regulates virulence expression accordingly. Our findings provide insights into how pathogenic bacteria evolve by acquiring genetic elements horizontally to adapt to host environments. IMPORTANCE The gastrointestinal tract represents a complex and challenging environment for enterohemorrhagic Escherichia coli (EHEC). However, EHEC is a highly adaptable pathogen, requiring only 10 to 100 CFUs to cause infection. This ability was achieved partially by acquiring mobile genetic elements, such as genomic islands, that promote overall fitness. Mannose is an intestinal mucus-derived sugar that stimulates virulence and is preferentially used by EHEC during infection. Here, we characterize the OI167 genomic island of EHEC, which encodes a novel two-component signaling system (TCS) and transporters and metabolic enzymes (EDL5429-5434) involved in mannose utilization. The TCS directly upregulates EDL5429-5434 and genes encoding the type III secretion system in the presence of mannose. Moreover, the TCS contributes greatly to EHEC virulence ex vivo and in vivo. Our data demonstrate an elegant example in which EHEC strains evolve by acquiring genetic elements horizontally to recognize the host metabolic landscape and regulate virulence expression accordingly, leading to successful infections.


Subject(s)
Enterohemorrhagic Escherichia coli , Escherichia coli Infections , Escherichia coli Proteins , Animals , Mice , Humans , Enterohemorrhagic Escherichia coli/metabolism , Virulence/genetics , Histidine Kinase/genetics , Histidine Kinase/metabolism , Genomic Islands , Mannose , HeLa Cells , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Type III Secretion Systems/metabolism , Escherichia coli Infections/microbiology , Gene Expression Regulation, Bacterial
5.
PLoS Negl Trop Dis ; 16(4): e0010402, 2022 04.
Article in English | MEDLINE | ID: mdl-35482821

ABSTRACT

Giardia duodenalis, the causative agent of giardiasis, is among the most important causes of waterborne diarrheal diseases around the world. Giardia infection may persist over extended periods with intestinal inflammation, although minimal. Cyclooxygenase (COX)-2 is well known as an important inducer of inflammatory response, while the role it played in noninvasive Giardia infection remains elusive. Here we investigated the regulatory function of COX-2 in Giardia-induced pro-inflammatory response and defense-related nitric oxide (NO) generation in macrophage-like cell line, and identified the potential regulators. We initially found that Giardia challenge induced up-regulation of IL-1ß, IL-6, TNF-α, prostaglandin (PG) E2, and COX-2 in macrophages, and pretreatment of the cells with COX-2 inhibitor NS398 reduced expressions of those pro-inflammatory factors. It was also observed that COX-2 inhibition could attenuate the up-regulated NO release and inducible NO synthase (iNOS) expression induced by Giardia. We further confirmed that Giardia-induced COX-2 up-regulation was mediated by the phosphorylation of p38 and ERK1/2 MAPKs and NF-κB. In addition, inhibition of reactive oxygen species (ROS) by NAC was shown to repress Giardia-induced activation of MAPK/NF-κB signaling, up-regulation of COX-2 and iNOS, increased levels of PGE2 and NO release, and up-expressions of IL-1ß, IL-6, and TNF-α. Collectively, in this study, we revealed a critical role of COX-2 in modulating pro-inflammatory response and defense-related NO production in Giardia-macrophage interactions, and this process was evident to be controlled by ROS-dependent activation of MAPK/NF-κB signaling. The results can deepen our knowledge of anti-Giardia inflammatory response and host defense mechanisms.


Subject(s)
Giardia lamblia , Giardiasis , Cell Line , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Giardia lamblia/metabolism , Humans , Interleukin-6/metabolism , Lipopolysaccharides , Macrophages/metabolism , NF-kappa B , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/metabolism
6.
Infect Immun ; 90(3): e0067221, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35130451

ABSTRACT

The protozoan parasite Giardia duodenalis inhabits the upper small intestine of mammals, including humans, and causes a disease known as giardiasis, which can lead to diarrhea, abdominal cramps, and bloating. G. duodenalis was known as a causative factor of intestinal epithelial cell (IEC) apoptosis. Cyclooxygenase-2 (COX-2) has been identified as an influencing factor of pathogen infection by participating in immune response, while its role in host defense against Giardia infection is not clear. Here, we initially observed the involvement of COX-2 in the regulation of Giardia-induced IEC apoptosis. Inhibition of COX-2 activity could promote Giardia-induced reduction of IEC viability, increase of reactive oxygen species (ROS) production, and decrease of nitric oxide (NO) release, which would exacerbate IEC apoptosis. In addition, during Giardia-IEC interactions, COX-2 inhibition was able to accelerate caspase-3 activation and poly(ADP-ribose) polymerase (PARP) cleavage and inhibit the expressions of some anti-apoptotic proteins like cIAP-2 and survivin. In contrast, COX-2 overexpression could reduce Giardia-induced IEC apoptosis. We further investigated the regulatory mechanisms affecting COX-2 expression in terms of anti-apoptosis. The results showed that p38/ERK/AKT/NF-κB signaling could regulate COX-2-mediated ROS/NO production and anti-IEC apoptosis during Giardia infection. We also found that COX-2-mediated anti-IEC apoptosis induced by Giardia was related to Toll-like receptor 4 (TLR4)-dependent activation of p38-NF-κB signaling. Collectively, this study identified COX-2 as a promoter for apoptotic resistance during Giardia-IEC interactions and determined the potential regulators, furthering our knowledge of anti-Giardia host defense mechanisms.


Subject(s)
Giardia lamblia , Giardiasis , Animals , Apoptosis , Cell Line , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Humans , Mammals , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism
7.
Cells ; 10(12)2021 12 06.
Article in English | MEDLINE | ID: mdl-34943932

ABSTRACT

The extracellular protozoan parasite Giardia duodenalis is a well-known and important causative agent of diarrhea on a global scale. Macrophage pyroptosis has been recognized as an important innate immune effector mechanism against intracellular pathogens. Yet, the effects of noninvasive Giardia infection on macrophage pyroptosis and the associated molecular triggers and regulators remain poorly defined. Here we initially observed that NLRP3 inflammasome-mediated pyroptosis was activated in Giardia-treated macrophages, and inhibition of ROS, NLRP3, or caspase-1 could block GSDMD cleavage, IL-1ß, IL-18 and LDH release, and the cell viability reduction. We also confirmed that Giardia-induced NLRP3 inflammasome activation was involved in its K63 deubiquitination. Thus, six candidate deubiquitinases were screened, among which A20 was identified as an effective regulator. We then screened TLRs on macrophage membranes and found that upon stimulation TLR4 was tightly correlated to ROS enhancement, A20-mediated NLRP3 deubiquitination, and pyroptotic signaling. In addition, several Giardia-secreted proteins were predicted as trigger factors via secretome analysis, of which peptidyl-prolyl cis-trans isomerase B (PPIB) independently induced macrophage pyroptosis. This was similar to the findings from the trophozoite treatment, and also led to the TLR4-mediated activation of NLRP3 through K63 deubiquitination by A20. Collectively, the results of this study have significant implications for expanding our understanding of host defense mechanisms after infection with G. duodenalis.


Subject(s)
Diarrhea/genetics , Giardia lamblia/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Toll-Like Receptor 4/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Animals , Cell Survival/drug effects , Deubiquitinating Enzymes/genetics , Diarrhea/immunology , Diarrhea/parasitology , Disease Models, Animal , Giardia lamblia/immunology , Giardia lamblia/pathogenicity , Host-Parasite Interactions/drug effects , Host-Parasite Interactions/immunology , Humans , Immunity, Innate/drug effects , Immunity, Innate/genetics , Inflammasomes/drug effects , Inflammasomes/immunology , Interleukin-18/genetics , Intracellular Signaling Peptides and Proteins/genetics , Isoenzymes/pharmacology , Macrophages/drug effects , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Peptidylprolyl Isomerase/pharmacology , Phosphate-Binding Proteins/genetics , Pyroptosis/drug effects , Pyroptosis/immunology , Reactive Oxygen Species/metabolism , Toll-Like Receptor 4/immunology , Trophozoites/drug effects , Trophozoites/pathogenicity , Tumor Necrosis Factor alpha-Induced Protein 3/immunology , Ubiquitination/genetics
8.
Front Microbiol ; 8: 275, 2017.
Article in English | MEDLINE | ID: mdl-28270808

ABSTRACT

Uropathogenic Escherichia coli (UPEC) are the primary causative agents of urinary tract infections. Some UPEC isolates are able to infect renal proximal tubule cells, and can potentially cause pyelonephritis. We have previously shown that to fulfill their physiological roles renal proximal tubule cells accumulate high concentrations of α-ketoglutarate (KG) and that gene cluster c5032-c5039 contribute to anaerobic utilization of KG by UPEC str. CFT073, thereby promoting its in vivo fitness. Given the importance of utilizing KG for UPEC, this study is designed to investigate the roles of two transporters KgtP and C5038 in KG utilization, their transcriptional regulation, and their contributions to UPEC fitness in vivo. Our phylogenetic analyses support that kgtP is a widely conserved locus in commensal and pathogenic E. coli, while UPEC-associated c5038 was acquired through horizontal gene transfer. Global anaerobic transcriptional regulators Fumarate and nitrate reduction (FNR) and ArcA induced c5038 expression in anaerobiosis, and C5038 played a major role in anaerobic growth on KG. KgtP was required for aerobic growth on KG, and its expression was repressed by FNR and ArcA under anaerobic conditions. Analyses of FNR and ArcA binding sites and results of EMS assays suggest that FNR and ArcA likely inhibit kgtP expression through binding to the -35 region of kgtP promoter and occluding the occupancy of RNA polymerases. Gene c5038 can be specifically induced by KG, whereas the expression of kgtP does not respond to KG, yet can be stimulated during growth on glycerol. In addition, c5038 and kgtP expression were further shown to be controlled by different alternative sigma factors RpoN and RpoS, respectively. Furthermore, dual-strain competition assays in a murine model showed that c5038 mutant but not kgtP mutant was outcompeted by the wild-type strain during the colonization of murine bladders and kidneys, highlighting the importance of C5038 under in vivo conditions. Therefore, different transcriptional regulation led to distinct roles played by C5038 and KgtP in KG utilization and fitness in vivo. This study thus potentially expanded our understanding of UPEC pathobiology.

SELECTION OF CITATIONS
SEARCH DETAIL
...