Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Language
Publication year range
1.
Genet Mol Res ; 15(4)2016 Oct 24.
Article in English | MEDLINE | ID: mdl-27813556

ABSTRACT

Glycine-rich protein (GRP) is involved in the response to abiotic and biotic stresses in plants. A novel GRP gene in Lablab purpureus has been identified. The cDNA of LpGRP was obtained from an SSH library constructed with root tissues of L. purpureus MEIDOU 2012 by waterholding for 10 days. The function of LpGRP was also evaluated in Arabidopsis. The cDNA of LpGRP has 555 bp and encodes a 184-amino acid protein. LpGRP was induced by drought and improved tolerance to abiotic stress. In LpGRP overexpressing Arabidopsis, the tolerance of transgenic seedlings to drought and salt was improved, and transgenic seeds showed insensitivity to both ABA and NaCl. The insensitivity to ABA indicated that there was crosstalk between LpGRP and ABA-responsive genes. These results indicated that LpGRP is a drought-responsive gene that can increase the drought and salt tolerance of Arabidopsis seedlings overexpressing LpGRP.


Subject(s)
Arabidopsis Proteins/genetics , Fabaceae/genetics , Plants, Genetically Modified/genetics , Stress, Physiological/genetics , Arabidopsis/genetics , Droughts , Fabaceae/growth & development , Gene Expression Regulation, Plant , Germination/genetics , Plant Roots/genetics , Plant Roots/growth & development , Plants, Genetically Modified/growth & development , Salt Tolerance/genetics , Seeds/genetics , Seeds/growth & development
2.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;38(12): 1791-1798, Dec. 2005. ilus
Article in English | LILACS | ID: lil-417201

ABSTRACT

Curcumin, a major yellow pigment and active component of turmeric, has multiple anti-cancer properties. However, its molecular targets and mechanisms of action on human colon adenocarcinoma cells are unknown. In the present study, we examined the effects of curcumin on the proliferation of human colon adenocarcinoma HT-29 cells by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide method and confirmed the curcumin-induced apoptosis by morphology and DNA ladder formation. At the same time, p53, phospho-p53 (Ser15), and other apoptosis-related proteins such as Bax, Bcl-2, Bcl-xL, pro-caspase-3, and pro-caspase-9 were determined by Western blot analysis. The colon adenocarcinoma cells were treated with curcumin (0-75 æM) for 0-24 h. We observed that p53 was highly expressed in HT-29 cells and curcumin could up-regulate the serine phosphorylation of p53 in a time- and concentration-dependent manner. An increase in expression of the pro-apoptotic factor Bax and a decrease in expression of the anti-apoptotic factor Bcl-2 were also observed in a time-dependent manner after exposure of 50 æM curcumin, while the expression of the anti-apoptotic factor Bcl-xL was unchanged. Curcumin could also down-regulate the expression of pro-caspase-3 and pro-caspase-9 in a time-dependent manner. These data suggest a possible underlying molecular mechanism whereby curcumin could induce the apoptosis signaling pathway in human HT-29 colon adenocarcinoma cells by p53 activation and by the regulation of apoptosis-related proteins. This property of curcumin suggests that it could have a possible therapeutic potential in colon adenocarcinoma patients.


Subject(s)
Humans , Animals , Mice , Rabbits , Apoptosis , Antineoplastic Agents/pharmacology , /drug effects , Curcumin/pharmacology , /drug effects , Blotting, Western , Cell Shape , /metabolism , Phosphorylation/drug effects , /metabolism , Signal Transduction/drug effects
3.
Braz J Med Biol Res ; 38(12): 1791-8, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16302093

ABSTRACT

Curcumin, a major yellow pigment and active component of turmeric, has multiple anti-cancer properties. However, its molecular targets and mechanisms of action on human colon adenocarcinoma cells are unknown. In the present study, we examined the effects of curcumin on the proliferation of human colon adenocarcinoma HT-29 cells by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide method and confirmed the curcumin-induced apoptosis by morphology and DNA ladder formation. At the same time, p53, phospho-p53 (Ser15), and other apoptosis-related proteins such as Bax, Bcl-2, Bcl-xL, pro-caspase-3, and pro-caspase-9 were determined by Western blot analysis. The colon adenocarcinoma cells were treated with curcumin (0-75 microM) for 0-24 h. We observed that p53 was highly expressed in HT-29 cells and curcumin could up-regulate the serine phosphorylation of p53 in a time- and concentration-dependent manner. An increase in expression of the pro-apoptotic factor Bax and a decrease in expression of the anti-apoptotic factor Bcl-2 were also observed in a time-dependent manner after exposure of 50 microM curcumin, while the expression of the anti-apoptotic factor Bcl-xL was unchanged. Curcumin could also down-regulate the expression of pro-caspase-3 and pro-caspase-9 in a time-dependent manner. These data suggest a possible underlying molecular mechanism whereby curcumin could induce the apoptosis signaling pathway in human HT-29 colon adenocarcinoma cells by p53 activation and by the regulation of apoptosis-related proteins. This property of curcumin suggests that it could have a possible therapeutic potential in colon adenocarcinoma patients.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis , Curcumin/pharmacology , HT29 Cells/drug effects , Tumor Suppressor Protein p53/drug effects , Animals , Blotting, Western , Cell Shape/drug effects , HT29 Cells/metabolism , Humans , Mice , Phosphorylation/drug effects , Rabbits , Signal Transduction/drug effects , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL