Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Nat Commun ; 15(1): 2163, 2024 Mar 09.
Article En | MEDLINE | ID: mdl-38461299

Recent development of new immune checkpoint inhibitors has been particularly successfully in cancer treatment, but still the majority patients fail to benefit. Converting resistant tumors to immunotherapy sensitive will provide a significant improvement in patient outcome. Here we identify Mi-2ß as a key melanoma-intrinsic effector regulating the adaptive anti-tumor immune response. Studies in genetically engineered mouse melanoma models indicate that loss of Mi-2ß rescues the immune response to immunotherapy in vivo. Mechanistically, ATAC-seq analysis shows that Mi-2ß controls the accessibility of IFN-γ-stimulated genes (ISGs). Mi-2ß binds to EZH2 and promotes K510 methylation of EZH2, subsequently activating the trimethylation of H3K27 to inhibit the transcription of ISGs. Finally, we develop an Mi-2ß-targeted inhibitor, Z36-MP5, which reduces Mi-2ß ATPase activity and reactivates ISG transcription. Consequently, Z36-MP5 induces a response to immune checkpoint inhibitors in otherwise resistant melanoma models. Our work provides a potential therapeutic strategy to convert immunotherapy resistant melanomas to sensitive ones.


DNA Helicases , Enhancer of Zeste Homolog 2 Protein , Immune Evasion , Melanoma , Animals , Humans , Mice , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immune Evasion/genetics , Melanoma/drug therapy , Methylation , DNA Helicases/genetics , DNA Helicases/metabolism
2.
Nat Commun ; 14(1): 7425, 2023 11 16.
Article En | MEDLINE | ID: mdl-37973794

The biosynthesis of neurotoxin aetokthonotoxin (AETX) that features a unique structure of pentabrominated biindole nitrile involves a first-of-its-kind nitrile synthase termed AetD, an enzyme that shares very low sequence identity to known structures and catalyzes an unprecedented mechanism. In this study, we resolve the crystal structure of AetD in complex with the substrate 5,7-di-Br-L-Trp. AetD adopts the heme oxygenase like fold and forms a hydrophobic cavity within a helical bundle to accommodate the indole moiety. A diiron cluster comprising two irons that serves as a catalytic center binds to the carboxyl O and the amino N of the substrate. Notably, we demonstrate that the AetD-catalyzed reaction is independent of the bromination of the substrate and also solved crystal structures of AetD in complex with 5-Br-L-Trp and L-Trp. Altogether, the present study reveals the substrate-binding pattern and validates the diiron cluster-comprising active center of AetD, which should provide important basis to support the mechanistic investigations into this class of nitrile synthase.


Heme Oxygenase (Decyclizing) , Nitric Oxide Synthase , Crystallography, X-Ray , Catalysis
3.
Bioorg Med Chem Lett ; 90: 129326, 2023 06 15.
Article En | MEDLINE | ID: mdl-37182611

The natural product aiphanol (1) is one of the substances with anticancer biological activity isolated from traditional Chinese medicines (TCM) Smilax glabra Roxb. (Tufuling). Our recent research found that aiphanol could suppress angiogenesis and tumor growth by dual-blocking VEGF/VEGFRs and COX2 signal pathway. In this study, four series of 40 aiphanol derivatives and analogues were designed, synthesized and evaluated for their anticancer activity. Among them, the analogues 10j and 14c exhibited the most potent inhibition and broad-spectrum antiproliferative activity toward nine tumor cell lines. The IC50 values of the analogues 10j and 14c range from 0.81 to 10 µmol/L which up to 80-fold vs. parent compound aiphanol. The structure-activity relationship (SAR) studies indicated that the substrate at 7-position of benzo 1,4-dioxane is very crucial for anticancer activity. Molecular docking indicated that the compound 14c (ent-14c) tightly binds to VEGFR2 and COX2, respectively. Therefore, compounds 10j and 14c could be promising candidates for the development of anticancer agents in the future.


Antineoplastic Agents , Biological Products , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Biological Products/pharmacology , Cell Proliferation , Cyclooxygenase 2/metabolism , Drug Design , Drug Screening Assays, Antitumor , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/pharmacology , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2
4.
Acta Pharmacol Sin ; 44(1): 189-200, 2023 Jan.
Article En | MEDLINE | ID: mdl-35778489

The high incidence of lymphatic metastasis is closely related to poor prognosis and mortality in cancers. Potent inhibitors to prevent pathological lymphangiogenesis and lymphatic spread are urgently needed. The VEGF-C-VEGFR3 pathway plays a vital role in driving lymphangiogenesis and lymph node metastasis. In addition, COX2 in tumor cells and tumor-associated macrophages (TAMs) facilitates lymphangiogenesis. We recently reported that aiphanol, a natural stilbenolignan, attenuates tumor angiogenesis by repressing VEGFR2 and COX2. In this study, we evaluated the antilymphangiogenic and antimetastatic potency of aiphanol using in vitro, ex vivo and in vivo systems. We first demonstrated that aiphanol directly bound to VEGFR3 and blocked its kinase activity with an half-maximal inhibitory concentration (IC50) value of 0.29 µM in an in vitro ADP-GloTM kinase assay. Furthermore, we showed that aiphanol (7.5-30 µM) dose-dependently counteracted VEGF-C-induced proliferation, migration and tubular formation of lymphatic endothelial cells (LECs), which was further verified in vivo. VEGFR3 knockdown markedly mitigated the inhibitory potency of aiphanol on lymphangiogenesis. In 4T1-luc breast tumor-bearing mice, oral administration of aiphanol (5 and 30 mg· kg-1 ·d-1) dose-dependently decreased lymphatic metastasis and prolonged survival time, which was associated with impaired lymphangiogenesis, angiogenesis and, interestingly, macrophage infiltration. In addition, we found that aiphanol decreased the COX2-dependent secretion of PGE2 and VEGF-C from tumor cells and macrophages. These results demonstrate that aiphanol is an appealing agent for preventing lymphangiogenesis and lymphatic dissemination by synergistically targeting VEGFR3 and inhibiting the COX2-PGE2-VEGF-C signaling axis.


Lymphangiogenesis , Vascular Endothelial Growth Factor C , Animals , Mice , Cell Line, Tumor , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Endothelial Cells/metabolism , Lymphatic Metastasis , Vascular Endothelial Growth Factor C/metabolism
5.
Am J Cancer Res ; 12(11): 4930-4953, 2022.
Article En | MEDLINE | ID: mdl-36504899

Cancer is one of the main causes of death in humans worldwide, the development of more effective anticancer drugs that can inhibit the malignant progression of cancer cells is of great significance. Aiphanol is a natural product identified from the seeds of Arecaceae and the rhizome of Smilax glabra Roxb. Our preliminary studies revealed that it had potential antiangiogenic and antilymphangiogenic activity by directly targeting VEGFR2/3 and COX2 in endothelial cells. However, the influence of aiphanol on cancer cells per se remains largely undefined. In this study, the effects and related mechanisms of aiphanol on cancer growth and metastasis were evaluated in vitro and in vivo. Acute toxicity assay and pharmacokinetic analysis were utilized to investigate the safety profile and metabolism characteristics of aiphanol. We revealed that aiphanol inhibited the proliferation of various types of cancer cells and the growth of xenograft tumors in mice and zebrafish models. The possible mechanism was associated with the inactivation of multiple kinases, including FAK, AKT and ERK, and the upregulation of BAX and cleaved caspase-3 to promote cancer cell apoptosis. Aiphanol significantly inhibited cancer cell migration and invasion, which was related to the inhibition of epithelial-mesenchymal transition (EMT) and F-actin aggregation. Aiphanol effectively attenuated the metastasis of several types of cancer cells in vivo. In addition, aiphanol exerted no significant toxicity and had fast metabolism. Collectively, we demonstrated the anticancer effects of aiphanol and suggested that aiphanol has potential as a safe and effective therapeutic agent to treat cancer.

6.
J Med Chem ; 64(11): 7507-7532, 2021 06 10.
Article En | MEDLINE | ID: mdl-34048243

Activation of the toll-like receptors 7 and 8 has emerged as a promising strategy for cancer immunotherapy. Herein, we report the design and synthesis of a series of pyrido[3,2-d]pyrimidine-based toll-like receptor 7/8 dual agonists that exhibited potent and near-equivalent agonistic activities toward TLR7 and TLR8. In vitro, compounds 24e and 25a significantly induced the secretion of IFN-α, IFN-γ, TNF-α, IL-1ß, IL-12p40, and IP-10 in human peripheral blood mononuclear cell assays. In vivo, compounds 24e, 24m, and 25a significantly suppressed tumor growth in CT26 tumor-bearing mice by remodeling the tumor microenvironment. Additionally, compounds 24e, 24m, and 25a markedly improved the antitumor activity of PD-1/PD-L1 blockade. In particular, compound 24e combined with the anti-PD-L1 antibody led to complete tumor regression. These results demonstrated that TLR7/8 agonists (24e, 24m, and 25a) held great potential as single agents or in combination with PD-1/PD-L1 blockade for cancer immunotherapy.


Antineoplastic Agents/chemistry , Drug Design , Pyridines/chemistry , Pyrimidines/chemistry , Toll-Like Receptor 7/agonists , Toll-Like Receptor 8/agonists , Animals , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Binding Sites , Humans , Immunotherapy , Interleukin-1beta/metabolism , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Mice , Mice, Inbred BALB C , Molecular Docking Simulation , Neoplasms/pathology , Neoplasms/therapy , Pyridines/metabolism , Pyridines/pharmacology , Pyridines/therapeutic use , Pyrimidines/metabolism , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Structure-Activity Relationship , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 8/metabolism , Tumor Microenvironment , Tumor Necrosis Factor-alpha/metabolism , Xenograft Model Antitumor Assays
7.
Org Lett ; 20(19): 6202-6205, 2018 10 05.
Article En | MEDLINE | ID: mdl-30232898

Concise, enantioselective, and divergent syntheses of alstoscholarisines A and E are presented in 8 and 9 steps, respectively; alstoscholarisine E has never been accessed before. A boron-mediated aldol reaction and Rh-catalyzed cycloisomerization were exploited to access stereoisomers 8 and 9 as key intermediates. The challenging sterically congested alstoscholarisine core was furnished by a reductive transannular cyclization in the final steps. This strategy was also used for the syntheses of enantiomers of alstoscholarisines A and E.

8.
FASEB J ; 32(4): 2036-2045, 2018 04.
Article En | MEDLINE | ID: mdl-29208702

The human kynurenine 3-monooxygenase (hKMO) is a potential therapeutic target for neurodegenerative and neurologic disorders. Inhibition of KMO by Ro 61-8048, a potent, selective, and the most widely used inhibitor of KMO, was shown effective in various models of neurodegenerative or neurologic disorders. However, the molecular basis of hKMO inhibition by Ro 61-8048 is not clearly understood. Here, we report biochemistry studies on hKMO and crystal structures of an hKMO homolog, pfKMO from Pseudomonas fluorescens, in complex with the substrate l-kynurenine and Ro 61-8048. We found that the C-terminal ∼110 aa are essential for the enzymatic activity of hKMO and the homologous C-terminal region of pfKMO folds into a distinct, all-α-helical domain, which associates with the N-terminal catalytic domain to form a unique tunnel in proximity to the substrate-binding pocket. The tunnel binds the Ro 61-8048 molecule, which fills most of the tunnel, and Ro 61-8048 is hydrogen bonded with several completely conserved residues, including an essential catalytic residue. Modification of Ro 61-8048 and biochemical studies of the modified Ro 61-8048 derivatives suggested that Ro 61-8048 inhibits the enzyme in an allosteric manner by affecting the conformation of the essential catalytic residue and by blocking entry of the substrate or product release. The unique binding sites distinguish Ro 61-8048 as a noncompetitive and highly selective inhibitor from other competitive inhibitors, which should facilitate further optimization of Ro 61-8048 and the development of new inhibitory drugs to hKMO.-Gao, J., Yao, L., Xia, T., Liao, X., Zhu, D., Xiang, Y. Biochemistry and structural studies of kynurenine 3-monooxygenase reveal allosteric inhibition by Ro 61-8048.


Allosteric Site , Bacterial Proteins/chemistry , Enzyme Inhibitors/pharmacology , Kynurenine 3-Monooxygenase/chemistry , Sulfonamides/pharmacology , Thiazoles/pharmacology , Allosteric Regulation , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Enzyme Inhibitors/chemistry , HEK293 Cells , Humans , Kynurenine 3-Monooxygenase/antagonists & inhibitors , Kynurenine 3-Monooxygenase/metabolism , Protein Binding , Pseudomonas fluorescens/enzymology , Sulfonamides/chemistry , Thiazoles/chemistry
9.
Org Lett ; 18(3): 628-30, 2016 Feb 05.
Article En | MEDLINE | ID: mdl-26744924

A [3 + 2] formal cycloaddition reaction using aza-oxyallyl cation as a synthetic synthon was developed to construct the pyrroloindololine core. With this novel method, a variety of C3-substituted indoles were readily converted into the corresponding pyrroloindoline analogues at room temperature in the mixed solvents. To further demonstrate the utility of this method, a synthetic approach to the total synthesis of (±)-minfiensine was developed in quite concise fashion.


Carbazoles/chemical synthesis , Indole Alkaloids/chemical synthesis , Carbazoles/chemistry , Cyclization , Indole Alkaloids/chemistry , Molecular Structure , Stereoisomerism
10.
Chem Sci ; 6(6): 3599-3605, 2015 Jun 01.
Article En | MEDLINE | ID: mdl-29511522

We report a unified strategy for the total syntheses of (-)-psychotriasine and (+)-pestalazine B based on the advanced intermediates of 3α-amino-hexahydropyrrolo[2,3-b]indole. To construct these structural motifs, a cascade reaction involving a BINOL-derived phosphoric anion-paired catalyst for enantioselective or diastereoselective azo-coupling/iminium-cyclizations was developed. The remaining key steps of the synthesis involve a sterically hindered amination via hypervalent iodine reagents and the Larock annulation. These transformations enable a general approach to the syntheses of indole alkaloids containing a 3α-amino-hexahydropyrrolo[2,3-b]indole motif and could be further applied to build a natural product-based library.

11.
Fitoterapia ; 83(8): 1318-21, 2012 Dec.
Article En | MEDLINE | ID: mdl-22516541

A new asymmetric diamide (E)-N-(3-acetamidopropyl)-cinnamamide named curcamide (1) has been isolated from the ethanol extract of the seed cake of Jatropha curcas L. along with 7 known compounds identified as isoamericanin (2), isoprincepin (3), caffeoylaldehyde (4), isoferulaldehyde (5), glycerol monooleate (6), syringaldehyde (7), and ß-ethyl-d-glucopyranoside (8). The synthesis and antibacterial activity of the new compound have been also studied.


Amides/chemistry , Cinnamates/chemistry , Diamide/chemistry , Jatropha/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Bacteria/drug effects , Cell Line, Tumor , Humans , Microbial Sensitivity Tests , Seeds
...