Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38786806

ABSTRACT

Rapid urbanization in many cities has produced massive amounts of problematic excavation soil. The direct disposal of untreated excavation soil often leads to significant land use and severe environmental concerns. A sustainable solution is to transform the soil waste into high-quality nano-calcined excavation soil (NCES) for application as a substitute for cement in construction. However, research in this area is very limited. This study presents a systematic investigation of the nano-sized calcined soil materials from preparation to application in cementitious material. The influence of milling parameters, including the rotational speed, milling duration, ball diameter, and milling strategy, was investigated to produce NCES with various specific surface areas. The effect of NCES substitution (15 wt% of Portland cement) in cementitious materials was then examined for mechanical performance, hydration dynamics, hydration products, and microstructure. A cement mix with very fine NCES (specific surface area of 108.76 m2/g) showed a 29.7% enhancement in mechanical strength and refined pore structure while a cement mix with un-grounded calcined soil showed a mechanical loss in comparison to the Control specimen. Delayed and reduced heat release at an early age was observed in a cement paste mixed with NCES. The underlying mechanism was investigated. The results of this work will contribute to the high-quality application of excavation soil waste.

2.
Materials (Basel) ; 17(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38793356

ABSTRACT

In response to the environmental implications of the massive quantities of excavation soil generated by global urbanization and infrastructure development, recent research efforts have explored the repurposing of calcined excavation soils as sustainable supplementary cementitious materials (SCMs). As it is still at an early stage, current research lacks systematic analysis across diverse soil deposits regarding their reactivity and mechanical properties within cementitious binders, despite recognized geographical variability in kaolinite content. Through comprehensive experimentation with soils sourced from four major southern Chinese cities, this study presents a pioneering assessment of the compressive strength, pozzolanic reactivity (X-ray diffraction, Fourier-transform infrared spectroscopy, solid-state nuclear magnetic resonance), and microstructural development (mercury intrusion porosimetry, scanning electron microscopy) of mortars modified by various calcined excavation soils (up to 28 days curing). The experimental data suggest that soils with a kaolinite content above 53.39% produce mortars of equal or superior quality to plain cement mixes, primarily due to their refined pore structures, microstructural densification, and enhanced hydration reactions. The findings highlight kaolinite-specifically, aluminum content-as the principal indicator of excavation soil viability for SCM application, suggesting a promising avenue for sustainable construction practices.

SELECTION OF CITATIONS
SEARCH DETAIL
...