Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
PeerJ ; 12: e17410, 2024.
Article in English | MEDLINE | ID: mdl-38818458

ABSTRACT

The basic helix-loop-helix (bHLH) gene family is integral to various aspects of plant development and the orchestration of stress response. This study focuses on the bHLH genes within Populus × canescens, a poplar species noted for its significant tolerance to cadmium (Cd) stress. Through our comprehensive genomic analysis, we have identified and characterized 170 bHLH genes within the P. canescens genome. These genes have been systematically classified into 22 distant subfamilies based on their evolutionary relationships. A notable conservation in gene structure and motif compositions were conserved across these subfamilies. Further analysis of the promoter regions of these genes revealed an abundance of essential cis-acting element, which are associated with plant hormonal regulation, development processes, and stress response pathway. Utilizing quantitative PCR (qPCR), we have documented the differential regulation of PcbHLHs in response to elevated Cd concentrations, with distinct expression patterns observed across various tissues. This study is poised to unravel the molecular mechanism underpinning Cd tolerance in P. canescens, offering valuable insights for the development of new cultivars with enhanced Cd accumulation capacity and tolerance. Such advancements are crucial for implementing effective phytoremediation strategies to mitigate soil pollution caused by Cd.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Cadmium , Gene Expression Regulation, Plant , Populus , Stress, Physiological , Populus/genetics , Populus/metabolism , Populus/drug effects , Cadmium/toxicity , Cadmium/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Gene Expression Regulation, Plant/drug effects , Stress, Physiological/genetics , Stress, Physiological/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Multigene Family , Genome, Plant , Promoter Regions, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL