Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012928

ABSTRACT

Neuroendocrine neoplasms are a diverse group of neoplasms that can occur in various areas throughout the body. Well-differentiated neuroendocrine tumors (NETs) most often arise in the gastrointestinal tract, termed gastroenteropancreatic neuroendocrine tumors (GEP-NETs). Although GEP-NETs are still uncommon, their incidence and prevalence have been steadily increasing over the past decades. The primary treatment for GEP-NETs is surgery, which offers the best chance for a cure. However, because GEP-NETs are often slow-growing and do not cause symptoms until they have spread widely, curative surgery is not always an option. Significant advances have been made in systemic and locoregional treatment options in recent years, including peptide-receptor radionuclide therapy with α and ß emitters, somatostatin analogs, chemotherapy, and targeted molecular therapies.

2.
Abdom Radiol (NY) ; 49(4): 1202-1209, 2024 04.
Article in English | MEDLINE | ID: mdl-38347265

ABSTRACT

INTRODUCTION: Classification of clear cell renal cell carcinoma (ccRCC) growth rates in patients with Von Hippel-Lindau (VHL) syndrome has several ramifications for tumor monitoring and surgical planning. Using two separate machine-learning algorithms, we sought to produce models to predict ccRCC growth rate classes based on qualitative MRI-derived characteristics. MATERIAL AND METHODS: We used a prospectively maintained database of patients with VHL who underwent surgical resection for ccRCC between January 2015 and June 2022. We employed a threshold growth rate of 0.5 cm per year to categorize ccRCC tumors into two distinct groups-'slow-growing' and 'fast-growing'. Utilizing a questionnaire of qualitative imaging features, two radiologists assessed each lesion on different MRI sequences. Two machine-learning models, a stacked ensemble technique and a decision tree algorithm, were used to predict the tumor growth rate classes. Positive predictive value (PPV), sensitivity, and F1-score were used to evaluate the performance of the models. RESULTS: This study comprises 55 patients with VHL with 128 ccRCC tumors. Patients' median age was 48 years, and 28 patients were males. Each patient had an average of two tumors, with a median size of 2.1 cm and a median growth rate of 0.35 cm/year. The overall performance of the stacked and DT model had 0.77 ± 0.05 and 0.71 ± 0.06 accuracies, respectively. The best stacked model achieved a PPV of 0.92, a sensitivity of 0.91, and an F1-score of 0.90. CONCLUSION: This study provides valuable insight into the potential of machine-learning analysis for the determination of renal tumor growth rate in patients with VHL. This finding could be utilized as an assistive tool for the individualized screening and follow-up of this population.


Subject(s)
Carcinoma, Renal Cell , Carcinoma , Kidney Neoplasms , Male , Humans , Middle Aged , Female , Carcinoma, Renal Cell/diagnostic imaging , Carcinoma, Renal Cell/pathology , Kidney/diagnostic imaging , Kidney/pathology , Kidney Neoplasms/diagnostic imaging , Kidney Neoplasms/surgery , Magnetic Resonance Imaging , Machine Learning
3.
J Magn Reson Imaging ; 60(3): 1076-1081, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38299714

ABSTRACT

BACKGROUND: Pathology grading is an essential step for the treatment and evaluation of the prognosis in patients with clear cell renal cell carcinoma (ccRCC). PURPOSE: To investigate the utility of texture analysis in evaluating Fuhrman grades of renal tumors in patients with Von Hippel-Lindau (VHL)-associated ccRCC, aiming to improve non-invasive diagnosis and personalized treatment. STUDY TYPE: Retrospective analysis of a prospectively maintained cohort. POPULATION: One hundred and thirty-six patients, 84 (61%) males and 52 (39%) females with pathology-proven ccRCC with a mean age of 52.8 ± 12.7 from 2010 to 2023. FIELD STRENGTH AND SEQUENCES: 1.5 and 3 T MRIs. Segmentations were performed on the T1-weighted 3-minute delayed sequence and then registered on pre-contrast, T1-weighted arterial and venous sequences. ASSESSMENT: A total of 404 lesions, 345 low-grade tumors, and 59 high-grade tumors were segmented using ITK-SNAP on a T1-weighted 3-minute delayed sequence of MRI. Radiomics features were extracted from pre-contrast, T1-weighted arterial, venous, and delayed post-contrast sequences. Preprocessing techniques were employed to address class imbalances. Features were then rescaled to normalize the numeric values. We developed a stacked model combining random forest and XGBoost to assess tumor grades using radiomics signatures. STATISTICAL TESTS: The model's performance was evaluated using positive predictive value (PPV), sensitivity, F1 score, area under the curve of receiver operating characteristic curve, and Matthews correlation coefficient. Using Monte Carlo technique, the average performance of 100 benchmarks of 85% train and 15% test was reported. RESULTS: The best model displayed an accuracy of 0.79. For low-grade tumor detection, a sensitivity of 0.79, a PPV of 0.95, and an F1 score of 0.86 were obtained. For high-grade tumor detection, a sensitivity of 0.78, PPV of 0.39, and F1 score of 0.52 were reported. DATA CONCLUSION: Radiomics analysis shows promise in classifying pathology grades non-invasively for patients with VHL-associated ccRCC, potentially leading to better diagnosis and personalized treatment. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 2.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Magnetic Resonance Imaging , Neoplasm Grading , Humans , Carcinoma, Renal Cell/diagnostic imaging , Carcinoma, Renal Cell/pathology , Female , Male , Middle Aged , Kidney Neoplasms/diagnostic imaging , Kidney Neoplasms/pathology , Magnetic Resonance Imaging/methods , Retrospective Studies , Adult , Aged , von Hippel-Lindau Disease/diagnostic imaging , von Hippel-Lindau Disease/complications , ROC Curve , Image Processing, Computer-Assisted/methods , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL