Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Theranostics ; 14(11): 4331-4351, 2024.
Article in English | MEDLINE | ID: mdl-39113801

ABSTRACT

Background: The impediment to ß-amyloid (Aß) clearance caused by the invalid intracranial lymphatic drainage in Alzheimer's disease is pivotal to its pathogenesis, and finding reliable clinical available solutions to address this challenge remains elusive. Methods: The potential role and underlying mechanisms of intranasal oxytocin administration, an approved clinical intervention, in improving intracranial lymphatic drainage in middle-old-aged APP/PS1 mice were investigated by live mouse imaging, ASL/CEST-MRI scanning, in vivo two-photon imaging, immunofluorescence staining, ELISA, RT-qPCR, Western blotting, RNA-seq analysis, and cognitive behavioral tests. Results: Benefiting from multifaceted modulation of cerebral hemodynamics, aquaporin-4 polarization, meningeal lymphangiogenesis and transcriptional profiles, oxytocin administration normalized the structure and function of both the glymphatic and meningeal lymphatic systems severely impaired in middle-old-aged APP/PS1 mice. Consequently, this intervention facilitated the efficient drainage of Aß from the brain parenchyma to the cerebrospinal fluid and then to the deep cervical lymph nodes for efficient clearance, as well as improvements in cognitive deficits. Conclusion: This work broadens the underlying neuroprotective mechanisms and clinical applications of oxytocin medication, showcasing its promising therapeutic prospects in central nervous system diseases with intracranial lymphatic dysfunction.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Disease Models, Animal , Glymphatic System , Mice, Transgenic , Oxytocin , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Mice , Oxytocin/pharmacology , Oxytocin/administration & dosage , Oxytocin/metabolism , Glymphatic System/metabolism , Glymphatic System/drug effects , Amyloid beta-Peptides/metabolism , Brain/metabolism , Brain/drug effects , Brain/diagnostic imaging , Administration, Intranasal , Lymphangiogenesis/drug effects , Male , Aquaporin 4/metabolism , Aquaporin 4/genetics , Humans , Magnetic Resonance Imaging , Meninges/metabolism , Meninges/drug effects , Meninges/diagnostic imaging
3.
ACS Nano ; 18(11): 7890-7906, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38445977

ABSTRACT

Ferroptosis is a vital driver of pathophysiological consequences of Alzheimer's disease (AD). High-efficiency pharmacological inhibition of ferroptosis requires comprehensive coordination of diverse abnormal intracellular events, which is an urgent problem and great challenge for its application in AD treatment. Herein, a triphenylphosphonium-modified quercetin-derived smart nanomedicine (TQCN) is developed for multipronged anti-ferroptosis therapy in AD. Taking advantage of the favorable brain-targeting and mitochondria-locating properties, TQCN can efficiently chelate iron through phytopolyphenol-mediated spontaneous coordination and self-assemble into metal-phenolic nanocomplexes in situ, exerting escalating exogenous offensive effects to attenuate iron overload and its induced free radical burst. Meanwhile, the Nrf2 signaling-mediated endogenous defensive system is reconstituted to restore iron metabolism homeostasis represented by iron export and storage and enhance cytoprotective antioxidant cascades represented by lipid peroxidation detoxification. Benefiting from the multifaceted regulation of pathogenic processes triggering ferroptosis, TQCN treatment can ameliorate various neurodegenerative manifestations associated with brain iron deposition and rescue severe cognitive decline in AD mice. This work displays great promise of in situ self-assembled phytopolyphenol-coordinated intelligent nanotherapeutics as advanced candidates against ferroptosis-driven AD progression.


Subject(s)
Alzheimer Disease , Ferroptosis , Organophosphorus Compounds , Animals , Mice , Alzheimer Disease/drug therapy , Antioxidants , Iron
SELECTION OF CITATIONS
SEARCH DETAIL