Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Brain Res Bull ; 203: 110776, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37805053

ABSTRACT

The relationship between brain structure alteration and metabolic product clearance after night shift work with total sleep deprivation (SD) remains unclear. Twenty-two intensive care unit staff on regularly rotating shift work were implemented with structural and diffusion MRI under both rest wakefulness (RW) and SD conditions. Peripheral blood samples were collected for the measurement of cerebral metabolites. Voxel-based morphometry and diffusion tensor imaging analysis were used to investigate the alterations in the gray matter density (GMD) and mean diffusivity (MD) within the participants. Furthermore, correlation analysis was performed to investigate the relationship between the neuroimaging metrics and hematological parameters. A significant increase in the GMD values was observed in the anterior and peripheral areas of the brain under SD. In contrast, a decrease in the values was observed in the posterior regions, such as the bilateral cerebellum and thalamus. In addition, a significant reduction in the total cerebrospinal fluid volume was observed under SD. The Aß42/Aß40 levels in participants under SD were significantly lower than those under RW. The mean MD increment values extracted from the region of interest (ROI) of the anterior brain were negatively correlated with the increment of plasma Aß42/Aß40 levels (r = -0.658, P = 0.008). The mean GMD decrement values extracted from the posterior ROI were positively correlated with the increment of plasma Aß-40 levels (r = 0.601, P = 0.023). The findings of this study suggest that one night of shift work under SD induces extensive and direction-specific structural alterations of the brain, which are associated with aberrant brain metabolic waste clearance.


Subject(s)
Diffusion Tensor Imaging , Sleep Deprivation , Humans , Diffusion Tensor Imaging/methods , Brain/diagnostic imaging , Wakefulness , Rest , Magnetic Resonance Imaging , Gray Matter/diagnostic imaging
2.
J Chem Phys ; 159(5)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37526163

ABSTRACT

DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials known as Deep Potential (DP) models. This package, which was released in 2017, has been widely used in the fields of physics, chemistry, biology, and material science for studying atomistic systems. The current version of DeePMD-kit offers numerous advanced features, such as DeepPot-SE, attention-based and hybrid descriptors, the ability to fit tensile properties, type embedding, model deviation, DP-range correction, DP long range, graphics processing unit support for customized operators, model compression, non-von Neumann molecular dynamics, and improved usability, including documentation, compiled binary packages, graphical user interfaces, and application programming interfaces. This article presents an overview of the current major version of the DeePMD-kit package, highlighting its features and technical details. Additionally, this article presents a comprehensive procedure for conducting molecular dynamics as a representative application, benchmarks the accuracy and efficiency of different models, and discusses ongoing developments.

5.
Sci Rep ; 12(1): 13709, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35961996

ABSTRACT

Perioperative cardiac arrest (POCA) is associated with a high mortality rate. This work aimed to study its prognostic factors for risk mitigation by means of care management and planning. A database of 380,919 surgeries was reviewed, and 150 POCAs were curated. The main outcome was mortality prior to hospital discharge. Patient demographic, medical history, and clinical characteristics (anesthesia and surgery) were the main features. Six machine learning (ML) algorithms, including LR, SVC, RF, GBM, AdaBoost, and VotingClassifier, were explored. The last algorithm was an ensemble of the first five algorithms. k-fold cross-validation and bootstrapping minimized the prediction bias and variance, respectively. Explainers (SHAP and LIME) were used to interpret the predictions. The ensemble provided the most accurate and robust predictions (AUC = 0.90 [95% CI, 0.78-0.98]) across various age groups. The risk factors were identified by order of importance. Surprisingly, the comorbidity of hypertension was found to have a protective effect on survival, which was reported by a recent study for the first time to our knowledge. The validated ensemble classifier in aid of the explainers improved the predictive differentiation, thereby deepening our understanding of POCA prognostication. It offers a holistic model-based approach for personalized anesthesia and surgical treatment.


Subject(s)
Heart Arrest , Precision Medicine , Heart Arrest/therapy , Humans , Machine Learning , Precision Medicine/adverse effects , Retrospective Studies , Risk Factors
6.
Front Psychiatry ; 13: 848709, 2022.
Article in English | MEDLINE | ID: mdl-35392383

ABSTRACT

Background: Intensive care unit (ICU) medical staffs undergoing sleep deprivation with perennial night shift work were usually at high risk of depression. However, shift work on depression-related resting-state functional magnetic resonance imaging was still not fully understood. The objective of this study was to explore the effects of sleep deprivation in ICU medical staffs after one night of shift work on brain functional connectivity density (FCD) and Hamilton Depression Rating Scale (HAMD) scores. Also, serum neurotransmitter concentrations of serotonin (5-HT) and norepinephrine (NE) were obtained simultaneously. Methods: A total of 21 ICU medical staffs without psychiatric history were recruited. All participants received HAMD score assessment and resting-state functional magnetic resonance imaging scans at two time points: one at rested wakefulness and the other after sleep deprivation (SD) accompanied with one night of shift work. Global FCD, local FCD, and long-range FCD (lrFCD) were used to evaluate spontaneous brain activity in the whole brain. In the meantime, peripheral blood samples were collected for measurement of serum 5-HT and NE levels. All these data were acquired between 7:00 and 8:00 am to limit the influence of biological rhythms. The correlations between the FCD values and HAMD scores and serum levels of neurotransmitters were analyzed concurrently. Results: Functional connectivity density mapping manifested that global FCD was decreased in the right medial frontal gyrus and the anterior cingulate gyrus, whereas lrFCD was decreased mainly in the right medial frontal gyrus. Most of these brain areas with FCD differences were components of the default mode network and overlapped with the medial prefrontal cortex. The lrFCD in the medial frontal gyrus showed a negative correlation with HAMD scores after SD. Compared with rested wakefulness, serum levels of 5-HT and NE decreased significantly, whereas HAMD scores were higher after SD within subjects. Conclusions: Our study suggested that sleep deprivation after night shift work can induce depressive tendency in ICU medical staffs, which might be related to alterative medial prefrontal cortex, raised HAMD scores, and varying monoamine neurotransmitters.

7.
Plants (Basel) ; 11(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35161340

ABSTRACT

To improve our understanding of the mechanism of maize seed germination under deep sowing, transcriptome sequencing and physiological metabolism analyses were performed using B73 embryos separated from ungerminated seeds (UG) or seeds germinated for 2 d at a depth of 2 cm (normal sowing, NS) or 20 cm (deep sowing, DS). Gene ontology (GO) analysis indicated that "response to oxidative stress" and "monolayer-surrounded lipid storage body" were the most significant GO terms in up- and down-regulated differentially expressed genes (DEGs) of DS. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that "phenylpropanoid biosynthesis" and "starch and sucrose metabolism" were critical processes in maize seed germination under deep-sowing conditions. Consistent with DEGs, the activities of superoxide dismutase, catalase, peroxidases and α-amylase, as well as the contents of gibberellin 4, indole acetic acid, zeatin and abscisic acid were significantly increased, while the jasmonic-acid level was dramatically reduced under deep-sowing stress. The expressions of six candidate genes were more significantly upregulated in B73 (deep-sowing-tolerant) than in Mo17 (deep-sowing-sensitive) at 20 cm sowing depth. These findings enrich our knowledge of the key biochemical pathways and genes regulating maize seed germination under deep-sowing conditions, which may help in the breeding of varieties tolerant to deep sowing.

8.
ACS Omega ; 7(3): 2690-2705, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35097267

ABSTRACT

For an energy-intensive sweetening process, it is common that sour gases from different sources are sent to a single sweetening plant in industries. In our previous work, a multiple gas feed sweetening process was proposed, which can simultaneously improve the purity of H2S and reduce the energy consumption of the plant. This study aims to develop the superstructure of that process and use a simulation-based optimization framework with Aspen HYSYS as the process simulator and particle swarm optimization algorithm as the optimizer. In addition, by taking full advantage of the robustness of the built-in algorithm of the simulator, the convergence of the model is improved; meanwhile, simplification of the process and reduction of the optimization time are accessible with the proposed design specifications and assumptions. For a convergence-difficult column, a stepwise convergence adjustment was used to ensure their convergence. Based on this, the robustness and effectiveness of the method is proven through a case study, and it can also provide guidance for model selection, process simplification, and optimization of the same type of absorption process.

11.
Sci Rep ; 11(1): 1300, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33446730

ABSTRACT

To construct a machine learning algorithm model of lymph node metastasis (LNM) in patients with poorly differentiated-type intramucosal gastric cancer. 1169 patients with postoperative gastric cancer were divided into a training group and a test group at a ratio of 7:3. The model for lymph node metastasis was established with python machine learning. The Gbdt algorithm in the machine learning results finds that number of resected nodes, lymphovascular invasion and tumor size are the primary 3 factors that account for the weight of LNM. Effect of the LNM model of PDC gastric cancer patients in the training group: Among the 7 algorithm models, the highest accuracy rate was that of GBDT (0.955); The AUC values for the 7 algorithms were, from high to low, XGB (0.881), RF (0.802), GBDT (0.798), LR (0.778), XGB + LR (0.739), RF + LR (0.691) and GBDT + LR (0.626). Results of the LNM model of PDC gastric cancer patients in test group : Among the 7 algorithmic models, XGB had the highest accuracy rate (0.952); Among the 7 algorithms, the AUC values, from high to low, were GBDT (0.788), RF (0.765), XGB (0.762), LR (0.750), RF + LR (0.678), GBDT + LR (0.650) and XGB + LR (0.619). Single machine learning algorithm can predict LNM in poorly differentiated-type intramucosal gastric cancer, but fusion algorithm can not improve the effect of machine learning in predicting LNM.


Subject(s)
Databases, Factual , Machine Learning , Models, Biological , Stomach Neoplasms , Adult , Female , Humans , Lymphatic Metastasis , Male , Middle Aged , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology
12.
ACS Omega ; 5(45): 29538-29546, 2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33225185

ABSTRACT

Previous studies on glass-transition temperature (T g) prediction mainly focus on developing diverse methods with higher regression accuracy, but very little attention has been paid to the dataset. Generally, a large range of T g values of a specified polymer could be found in the literature but which one should be selected into a dataset merely depends on the implicit preference rather than a recognized and clear criterion. In this paper, limiting glass-transition temperature (T g(∞)), a constant value obtained at the infinite number-average molecular weight M n, was validated to be an adequate bridge index in the T g prediction models. Furthermore, a new dataset containing 198 polymers was established to predict T g(∞) using the improved group contribution method and it showed a good correlation (R 2 = 0.9925, adjusted R 2 = 0.9894). The method could also generate T g-M n curves by introducing the T g(∞) function and provide more information to polymer scientists and engineers for material selection, product design, and synthesis.

SELECTION OF CITATIONS
SEARCH DETAIL