Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 10, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38169465

ABSTRACT

Tactile function is essential for human life as it enables us to recognize texture and respond to external stimuli, including potential threats with sharp objects that may result in punctures or lacerations. Severe skin damage caused by severe burns, skin cancer, chemical accidents, and industrial accidents damage the structure of the skin tissue as well as the nerve system, resulting in permanent tactile sensory dysfunction, which significantly impacts an individual's daily life. Here, we introduce a fully-implantable wireless powered tactile sensory system embedded artificial skin (WTSA), with stable operation, to restore permanently damaged tactile function and promote wound healing for regenerating severely damaged skin. The fabricated WTSA facilitates (i) replacement of severely damaged tactile sensory with broad biocompatibility, (ii) promoting of skin wound healing and regeneration through collagen and fibrin-based artificial skin (CFAS), and (iii) minimization of foreign body reaction via hydrogel coating on neural interface electrodes. Furthermore, the WTSA shows a stable operation as a sensory system as evidenced by the quantitative analysis of leg movement angle and electromyogram (EMG) signals in response to varying intensities of applied pressures.


Subject(s)
Skin, Artificial , Humans , Bionics , Touch/physiology , Skin , Wound Healing , Sense Organs
3.
Nat Nanotechnol ; 18(12): 1502-1514, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37884660

ABSTRACT

Commencing with the breakdown of immune tolerance, multiple pathogenic factors, including synovial inflammation and harmful cytokines, are conjointly involved in the progression of rheumatoid arthritis. Intervening to mitigate some of these factors can bring a short-term therapeutic effect, but other unresolved factors will continue to aggravate the disease. Here we developed a ceria nanoparticle-immobilized mesenchymal stem cell nanovesicle hybrid system to address multiple factors in rheumatoid arthritis. Each component of this nanohybrid works individually and also synergistically, resulting in comprehensive treatment. Alleviation of inflammation and modulation of the tissue environment into an immunotolerant-favourable state are combined to recover the immune system by bridging innate and adaptive immunity. The therapy is shown to successfully treat and prevent rheumatoid arthritis by relieving the main symptoms and also by restoring the immune system through the induction of regulatory T cells in a mouse model of collagen-induced arthritis.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Mice , Animals , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , Adaptive Immunity , Cytokines , Inflammation
4.
ACS Biomater Sci Eng ; 9(6): 3512-3521, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37126860

ABSTRACT

This study aimed to investigate the effect of electrical stimulation on poly(d,l-lactide-co-ε-caprolactone) nerve guidance conduits (NGCs) in promoting the recovery of facial function and nerve regeneration after facial nerve (FN) injury in a rat model. In the experimental group, both the NGC and transcutaneous electrical nerve stimulation (ES) were used simultaneously; in the control group, only NGC was used. ES groups were divided into two groups, and direct current (DC) and charge-balanced pulse stimulation (Pulse) were applied. The ES groups showed significantly improved whisker movement than the NGC-only group. The number of myelinated neurons was higher in ES groups, and the myelin sheath was also thicker and more uniform. In addition, the expression of neurostructural proteins was also higher in ES groups than in the NGC-only group. This study revealed that FN regeneration and functional recovery occurred more efficiently when ES was applied in combination with NGCs.


Subject(s)
Facial Nerve , Guided Tissue Regeneration , Rats , Animals , Rats, Sprague-Dawley , Sciatic Nerve/injuries , Sciatic Nerve/surgery , Nerve Regeneration/physiology , Electric Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL
...