Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Publication year range
1.
Microbiol Res ; 282: 127667, 2024 May.
Article in English | MEDLINE | ID: mdl-38442456

ABSTRACT

The interaction of iron and intestinal flora, both of which play crucial roles in many physiologic processes, is involved in the development of Metabolic syndrome (MetS). MetS is a pathologic condition represented by insulin resistance, obesity, dyslipidemia, and hypertension. MetS-related comorbidities including type 2 diabetes mellitus (T2DM), obesity, metabolism-related fatty liver (MAFLD), hypertension polycystic ovary syndrome (PCOS), and so forth. In this review, we examine the interplay between intestinal flora and human iron metabolism and its underlying mechanism in the pathogenesis of MetS-related comorbidities. The composition and metabolites of intestinal flora regulate the level of human iron by modulating intestinal iron absorption, the factors associated with iron metabolism. On the other hand, the iron level also affects the abundance, composition, and metabolism of intestinal flora. The crosstalk between these factors is of significant importance in human metabolism and exerts varying degrees of influence on the manifestation and progression of MetS-related comorbidities. The findings derived from these studies can enhance our comprehension of the interplay between intestinal flora and iron metabolism, and open up novel potential therapeutic approaches toward MetS-related comorbidities.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Hypertension , Metabolic Syndrome , Female , Humans , Metabolic Syndrome/complications , Metabolic Syndrome/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Obesity/complications , Obesity/metabolism , Iron/metabolism , Hypertension/complications
2.
Zhen Ci Yan Jiu ; 47(8): 684-9, 2022 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-36036101

ABSTRACT

OBJECTIVE: To observe the effect of electroacupuncture (EA) at "Zusanli"(ST36) pretreatment on lung functions, inflammatory response, and levels of angiotensin-converting enzyme 2 (ACE2) and angiotensin (1-7) ï¼»Ang (1-7)ï¼½ in rats with sepsis-induced acute lung injury (ALI), so as to explore its mechanisms underlying improvement of ALI. METHODS: Thirty male SD rats were randomly divided into normal, model and EA groups (n=10 in each group). The sepsis-related ALI model was established by intraperitoneal injection of lipopolysaccharide (LPS, 5 mg/kg). Rats of the EA group received EA (4 Hz/20 Hz, 1-3 mA) stimulation at bilateral ST36 for 30 min, once each day, for 7 days before modeling. The lung functions including forced vital capacity (FVC), forced expiratory volume at 0.1 second (FEV0.1) and FEV0.3 were detected using a respiratory function detector for small animals at 3 h after modeling. The bronchoalveolar lavage fluid (BALF) was collected for assaying the contents of Ang (1-7), tumor necrosis factor-α (TNF-α) and interleukin-1 ß (IL-1ß) using ELISA. The lung wet/dry weight (W/D) ratio, FEV0.1/FVC, and FEV0.3/FVC were calculated. The histopathological changes of lung tissues were displayed by hematoxylin-eosin (H.E.) staining. The expression of ACE2 and mitochondrial assembly receptor (MasR) mRNAs and proteins in the lung tissue was detected by fluorescence quantitative real-time PCR and Western blot, separately. RESULTS: Following modeling, the levels of FVC, FEV0.1, FEV0.3, ratio of FEV0.1/FVC and FEV0.3/FVC, content of Ang (1-7) in the BALF, and the expression levels of ACE2 and MasR mRNAs and proteins in the lung tissue were significantly decreased (P<0.01), while the level of W/D ratio and TNF-α and IL-1ß contents in the BALF significantly increased (P<0.01) in the model group relevant to the normal group. In comparison with the model group, the levels of FVC, FEV0.1, FEV0.3, ratio of FEV0.1/FVC and FEV0.3/FVC, content of Ang (1-7) in the BALF, and expression levels of ACE2 and MasR mRNAs and proteins in the lung tissue were significantly increased (P<0.05, P<0.01), whereas the level of W/D ratio, and TNF-α and IL-1ß contents in the BALF were significantly decreased (P<0.05, P<0.01) in the EA group. H.E. staining showed pulmonary interstitial edema and alveolar septum thickening with severe inflammatory cell infiltration in the model group, which was relatively milder in the EA group. CONCLUSION: EA preconditioning at ST36 can improve pulmonary function in sepsis-related ALI rats, which may be related to its effects in inhibiting inflammatory response and up-regulating ACE2 and MasR expression and Ang (1-7) content in the lung tissue.


Subject(s)
Acute Lung Injury , Electroacupuncture , Sepsis , Angiotensin I , Angiotensin-Converting Enzyme 2 , Animals , Lipopolysaccharides , Lung , Male , Peptide Fragments , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha
3.
J Infect Public Health ; 14(12): 1788-1795, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34785168

ABSTRACT

BACKGROUND: Antibiotics are widely used to prevent and control diseases and infection for reducing the morbidity and mortality of animals, because of the high-density stocking in modern food-source animal production. However, the overuse of antibiotics in animal farms results in antimicrobial resistance (AMR), and causes public health issues through the food chain. Therefore, the AMR analysis of the farms and their surrounding environments is great significance to public health. METHODS: To investigate the distribution of AMR genes and analyze the antimicrobial drug resistance of Escherichia coli in feces and surrounding soil of animal farm in Zhanjiang, China. E. coli was isolated and identified through PCR, and the distribution of 21 common antimicrobial drug resistance genes were also detected by using PCR. The minimum inhibitory concentration (MIC) of the isolated E. coli strains against 22 drugs was detected using the broth double dilution method. RESULTS: The results showed that the different AMR genes were detected in both feces and soil, and the detection rate of each AMR gene was higher than 50%. The detection rate of most AMR genes in feces was higher than those in soil. Besides, the isolated 88 strains of E. coli were resistant to 22 kinds of antimicrobial drugs. The highest drug resistance rate (100%) was observed for amoxicillin, colistin, doxycycline and oxytetracycline, and the drug resistance rate of cephalosporins was less than 10%. The drug resistance rate of the isolated strains of E. coli from feces was higher than those from soil, however, in both of feces and soil, most of the isolated strains of E. coli from (77.55% of isolates from feces, 79.49% of isolates from soil and total 78.41%) showed multi-drug resistance (resistant to 15-22 drugs). CONCLUSION: Overall, the detection rate of AMR genes in feces and soil from hog farms was high, and the isolated strains of E. coli from both feces and soil showed multi-drug resistance. Also, the results showed that the AMR genes and drug resistance in the feces and soil from the hog farms are similar. These findings suggested that the AMR genes could be transmitted horizontally from the animal feces to surrounding environments of farms. Therefore, it is urgent need to strengthen the monitoring and guide the rational use of antimicrobial drugs in the hog industry of Zhanjiang, China.


Subject(s)
Escherichia coli Infections , Escherichia coli , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial , Escherichia coli/genetics , Escherichia coli Infections/drug therapy , Escherichia coli Infections/veterinary , Farms , Feces , Microbial Sensitivity Tests
4.
Materials (Basel) ; 13(10)2020 May 25.
Article in English | MEDLINE | ID: mdl-32466186

ABSTRACT

In this paper, the effect of repair welding heat input on microstructure, residual stresses, and stress corrosion cracking (SCC) sensitivity were investigated by simulation and experiment. The results show that heat input influences the microstructure, residual stresses, and SCC behavior. With the increase of heat input, both the δ-ferrite in weld and the average grain width decrease slightly, while the austenite grain size in the heat affected zone (HAZ) is slightly increased. The predicted repair welding residual stresses by simulation have good agreement with that by X-ray diffraction (XRD). The transverse residual stresses in the weld and HAZ are gradually decreased as the increases of heat input. The higher heat input can enhance the tensile strength and elongation of repaired joint. When the heat input was increased by 33%, the SCC sensitivity index was decreased by more than 60%. The macroscopic cracks are easily generated in HAZ for the smaller heat input, leading to the smaller tensile strength and elongation. The larger heat input is recommended in the repair welding in 304 stainless steel.

5.
Materials (Basel) ; 13(11)2020 May 26.
Article in English | MEDLINE | ID: mdl-32466395

ABSTRACT

The repair reinforcement height is an important parameter of repair welding, which may have a great influence on structural integrity. In this paper, the effects of repair welding reinforcement height on the microstructure, microhardness, residual stresses and stress corrosion cracking (SCC) behavior of a 304 stainless steel-repaired joint were investigated by experimentation and simulation. With an increase of the repair weld reinforcement height, the δ ferrite content in weld and fusion zone is obviously reduced, and the ferrite shape is gradually changed from the skeleton to the worm shape. With the increase of repair welding reinforcement height, the microhardness and residual stresses decrease gradually. The tensile strength and elongation for higher repair weld reinforcement height are larger than those with lower repair weld reinforcement height. The higher the repair weld reinforcement height, the harder it is for SCC to occur. The repair welding in 304 stainless steel is recommended to be repaired no more than two times.

SELECTION OF CITATIONS
SEARCH DETAIL