Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Biotechnol ; 15(11): 2758-2772, 2022 11.
Article in English | MEDLINE | ID: mdl-36070350

ABSTRACT

L-5-Methyltetrahydrofolate (L-5-MTHF) is the only biologically active form of folate in the human body. Production of L-5-MTHF by using microbes is an emerging consideration for green synthesis. However, microbes naturally produce only a small amount of L-5-MTHF. Here, Escherichia coli BL21(DE3) was engineered to increase the production of L-5-MTHF by overexpressing the intrinsic genes of dihydrofolate reductase and methylenetetrahydrofolate (methylene-THF) reductase, introducing the genes encoding formate-THF ligase, formyl-THF cyclohydrolase and methylene-THF dehydrogenase from the one-carbon metabolic pathway of Methylobacterium extorquens or Clostridium autoethanogenum and disrupting the gene of methionine synthase involved in the consumption and synthesis inhibition of the target product. Thus, upon its native pathway, an additional pathway for L-5-MTHF synthesis was developed in E. coli, which was further analysed and confirmed by qRT-PCR, enzyme assays and metabolite determination. After optimizing the conditions of induction time, temperature, cell density and concentration of IPTG and supplementing exogenous substances (folic acid, sodium formate and glucose) to the culture, the highest yield of 527.84 µg g-1 of dry cell weight for L-5-MTHF was obtained, which was about 11.8 folds of that of the original strain. This study paves the way for further metabolic engineering to improve the biosynthesis of L-5-MTHF in E. coli.


Subject(s)
Escherichia coli Infections , Escherichia coli , Humans , Escherichia coli/genetics , Escherichia coli/metabolism , Tetrahydrofolates/metabolism , Tetrahydrofolates/pharmacology , Folic Acid/metabolism , Folic Acid/pharmacology
2.
Microbiol Spectr ; 10(4): e0043622, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35762779

ABSTRACT

Thermotoga maritima is an anaerobic hyperthermophilic bacterium that efficiently produces H2 by fermenting carbohydrates. High concentration of H2 inhibits the growth of T. maritima, and S0 could eliminate the inhibition and stimulate the growth through its reduction. The mechanism of T. maritima sulfur reduction, however, has not been fully understood. Herein, based on its similarity with archaeal NAD(P)H-dependent sulfur reductases (NSR), the ORF THEMA_RS02810 was identified and expressed in Escherichia coli, and the recombinant protein was characterized. The purified flavoprotein possessed NAD(P)H-dependent S0 reductase activity (1.3 U/mg for NADH and 0.8 U/mg for NADPH), polysulfide reductase activity (0.32 U/mg for NADH and 0.35 U/mg for NADPH), and thiosulfate reductase activity (2.3 U/mg for NADH and 2.5 U/mg for NADPH), which increased 3~4-folds by coenzyme A stimulation. Quantitative RT-PCR analysis showed that nsr was upregulated together with the mbx, yeeE, and rnf genes when the strain grew in S0- or thiosulfate-containing medium. The mechanism for sulfur reduction in T. maritima was discussed, which may affect the redox balance and energy metabolism of T. maritima. Genome search revealed that NSR homolog is widely distributed in thermophilic bacteria and archaea, implying its important role in the sulfur cycle of geothermal environments. IMPORTANCE The reduction of S0 and thiosulfate is essential in the sulfur cycle of geothermal environments, in which thermophiles play an important role. Despite previous research on some sulfur reductases of thermophilic archaea, the mechanism of sulfur reduction in thermophilic bacteria is still not clearly understood. Herein, we confirmed the presence of a cytoplasmic NAD(P)H-dependent polysulfide reductase (NSR) from the hyperthermophile T. maritima, with S0, polysulfide, and thiosulfate reduction activities, in contrast to other sulfur reductases. When grown in S0- or thiosulfate-containing medium, its expression was upregulated. And the putative membrane-bound MBX and Rnf may also play a role in the metabolism, which might influence the redox balance and energy metabolism of T. maritima. This is distinct from the mechanism of sulfur reduction in mesophiles such as Wolinella succinogenes. NSR homologs are widely distributed among heterotrophic thermophiles, suggesting that they may be vital in the sulfur cycle in geothermal environments.


Subject(s)
NAD , Thermotoga maritima , Archaea/metabolism , Bacteria/metabolism , NAD/metabolism , NADP/metabolism , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/metabolism , Sulfur/metabolism , Sulfurtransferases , Thermotoga maritima/genetics , Thermotoga maritima/metabolism , Thiosulfates/metabolism
3.
Microbiol Spectr ; 9(2): e0095821, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34643446

ABSTRACT

The strict anaerobe Clostridium ljungdahlii can ferment CO or H2/CO2 via the Wood-Ljungdahl pathway to acetate, ethanol, and 2,3-butanediol. This ability has attracted considerable interest, since it can be used for syngas fermentation to produce biofuels and biochemicals. However, the key enzyme methylenetetrahydrofolate reductase (MTHFR) in the Wood-Ljungdahl pathway of the strain has not been characterized, and its physiological electron donor is unclear. In this study, we purified the enzyme 46-fold with a benzyl viologen reduction activity of 41.2 U/mg from C. ljungdahlii cells grown on CO. It is composed of two subunits, MetF (31.5 kDa) and MetV (23.5 kDa), and has an apparent molecular mass of 62.2 kDa. The brownish yellow protein contains 0.73 flavin mononucleotide (FMN) and 7.4 Fe, in agreement with the prediction that MetF binds one flavin and MetV binds two [4Fe4S] clusters. It cannot use NAD(P)H as its electron donor or catalyze an electron-bifurcating reaction in combination with ferredoxin as an electron acceptor. The reduced recombinant ferredoxin, flavodoxin, and thioredoxin of C. ljungdahlii can serve as electron donors with specific activities of 91.2, 22.1, and 7.4 U/mg, respectively. The apparent Km values for reduced ferredoxin and flavodoxin were around 1.46 µM and 0.73 µM, respectively. Subunit composition and phylogenetic analysis showed that the enzyme from C. ljungdahlii belongs to MetFV-type MTHFR, which is a heterodimer, and uses reduced ferredoxin as its electron donor. Based on these results, we discuss the energy metabolism of C. ljungdahlii when it grows on CO or H2 plus CO2. IMPORTANCE Syngas, a mixture of CO, CO2, and H2, is the main component of steel mill waste gas and also can be generated by the gasification of biomass and urban domestic waste. Its fermentation to biofuels and biocommodities has attracted attention due to the economic and environmental benefits of this process. Clostridium ljungdahlii is one of the superior acetogens used in the technology. However, the biochemical mechanism of its gas fermentation via the Wood-Ljungdahl pathway is not completely clear. In this study, the key enzyme, methylenetetrahydrofolate reductase (MTHFR), was characterized and found to be a non-electron-bifurcating heterodimer with reduced ferredoxin as its electron donor, representing another example of MetFV-type MTHFR. The findings will form the basis for a deeper understanding of the energy metabolism of syngas fermentation by C. ljungdahlii, which is valuable for developing metabolic engineering strains and efficient syngas fermentation technologies.


Subject(s)
Biofuels/analysis , Clostridium/enzymology , Clostridium/metabolism , Energy Metabolism/physiology , Methylenetetrahydrofolate Reductase (NADPH2)/metabolism , Carbon Dioxide/metabolism , Carbon Monoxide/metabolism , Fermentation , Ferredoxins/metabolism , Flavodoxin/metabolism , Hydrogen/metabolism , Thioredoxins/metabolism
4.
Front Microbiol ; 11: 416, 2020.
Article in English | MEDLINE | ID: mdl-32256473

ABSTRACT

Both CO and H2 can be utilized as energy sources during the autotrophic growth of Clostridium ljungdahlii. In principle, CO is a more energetically and thermodynamically favorable energy source for gas fermentation in comparison to H2. Therefore, metabolism may vary during growth under different energy sources. In this study, C. ljungdahlii was fed with CO and/or CO2/H2 at pH 6.0 with a gas pressure of 0.1 MPa. C. ljungdahlii primarily produced acetate in the presence of H2 as an energy source, but produced alcohols with CO as an energy source under the same fermentation conditions. A key enzyme activity assay, metabolic flux analysis, and comparative transcriptomics were performed for investigating the response mechanism of C. ljungdahlii under different energy sources. A CO dehydrogenase and an aldehyde:ferredoxin oxidoreductase were found to play important roles in CO utilization and alcohol production. Based on these findings, novel metabolic schemes are proposed for C. ljungdahlii growing on CO and/or CO2/H2. These schemes indicate that more ATP is produced during CO-fermentation than during H2-fermentation, leading to increased alcohol production.

5.
CNS Neurosci Ther ; 26(2): 167-176, 2020 02.
Article in English | MEDLINE | ID: mdl-31423743

ABSTRACT

AIMS: Our previous study indicated that chronic stress caused autophagy impairment and subsequent neuron apoptosis in hippocampus. However, the mechanism underlying the stress-induced damage to neurons is unclear. In present work, we investigated whether stress-level glucocorticoids (GCs) GCs promoted PC12 cell damage via AMPK/mTOR signaling-mediated autophagy. METHODS: Chronic stress-induced PC12 cell injury model was built by treatment with high level corticosterone (CORT). Cell injury was evaluated by flow cytometry assay and transmission electron microscopy observation. RESULTS: Autophagy flux was measured based on the changes in LC3-II and P62 protein expressions, and the color alteration of mCherry-GFP-LC3-II transfection. Our results showed that CORT not only increased cell injury and apoptosis, but also dysregulated AMPK/mTOR signaling-mediated autophagy flux, as indicated by the upregulated expression of LC3-II and P62 proteins, and the lowered ration of autolysosomes to autophagosomes. Mechanistically, our results demonstrated that autophagy activation by AMPK activator metformin or mTOR inhibitor rapamycin obviously promotes cell survival and autophagy flux, improved mitochondrial ultrastructure, and reduced expression of Cyt-C and caspase-3 in CORT-induced PC12 cells. CONCLUSION: These results indicate that high CORT triggers PC12 cell damage through disrupting AMPK/mTOR-mediated autophagy flux. Targeting this signaling may be a promising approach to protect against high CORT and chronic stress-induced neuronal impairment.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Autophagy/drug effects , Corticosterone/toxicity , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/genetics , Animals , Apoptosis/drug effects , Enzyme Activation/drug effects , Flow Cytometry , Lysosomes/drug effects , Metformin/pharmacology , Microtubule-Associated Proteins/metabolism , PC12 Cells , Phagosomes/drug effects , Rats , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors
6.
Appl Environ Microbiol ; 85(11)2019 06 01.
Article in English | MEDLINE | ID: mdl-30926728

ABSTRACT

Agrobacterium tumefaciens S33 degrades nicotine via a novel hybrid of the pyridine and the pyrrolidine pathways. The hybrid pathway consists of at least six steps involved in oxidoreductive reactions before the N-heterocycle can be broken down. Collectively, the six steps allow electron transfer from nicotine and its intermediates to the final acceptor O2 via the electron transport chain (ETC). 6-Hydroxypseudooxynicotine oxidase, renamed 6-hydroxypseudooxynicotine dehydrogenase in this study, has been characterized as catalyzing the fourth step using the artificial electron acceptor 2,6-dichlorophenolindophenol. Here, we used biochemical, genetic, and liquid chromatography-mass spectrometry (LC-MS) analyses to determine that 6-hydroxypseudooxynicotine dehydrogenase utilizes the electron transfer flavoprotein (EtfAB) as the physiological electron acceptor to catalyze the dehydrogenation of pseudooxynicotine, an analogue of the true substrate 6-hydroxypseudooxynicotine, in vivo, into 3-succinoyl-semialdehyde-pyridine. NAD(P)+, O2, and ferredoxin could not function as electron acceptors. The oxygen atom in the aldehyde group of the product 3-succinoyl-semialdehyde-pyridine was verified to be derived from H2O. Disruption of the etfAB genes in the nicotine-degrading gene cluster decreased the growth rate of A. tumefaciens S33 on nicotine but not on 6-hydroxy-3-succinoylpyridine, an intermediate downstream of the hybrid pathway, indicating the requirement of EtfAB for efficient nicotine degradation. The electrons were found to be further transferred from the reduced EtfAB to coenzyme Q by the catalysis of electron transfer flavoprotein:ubiquinone oxidoreductase. These results aid in an in-depth understanding of the electron transfer process and energy metabolism involved in the nicotine oxidation and provide novel insights into nicotine catabolism in bacteria.IMPORTANCE Nicotine has been studied as a model for toxic N-heterocyclic aromatic compounds. Microorganisms can catabolize nicotine via various pathways and conserve energy from its oxidation. Although several oxidoreductases have been characterized to participate in nicotine degradation, the electron transfer involved in these processes is poorly understood. In this study, we found that 6-hydroxypseudooxynicotine dehydrogenase, a key enzyme in the hybrid pyridine and pyrrolidine pathway for nicotine degradation in Agrobacterium tumefaciens S33, utilizes EtfAB as a physiological electron acceptor. Catalyzed by the membrane-associated electron transfer flavoprotein:ubiquinone oxidoreductase, the electrons are transferred from the reduced EtfAB to coenzyme Q, which then could enter into the classic ETC. Thus, the route for electron transport from the substrate to O2 could be constructed, by which ATP can be further sythesized via chemiosmosis to support the baterial growth. These findings provide new knowledge regarding the catabolism of N-heterocyclic aromatic compounds in microorganisms.


Subject(s)
Agrobacterium tumefaciens/metabolism , Electron Transport Chain Complex Proteins/metabolism , Electron Transport/physiology , Electron-Transferring Flavoproteins/metabolism , Nicotine/metabolism , Oxidoreductases/metabolism , Agrobacterium tumefaciens/genetics , Bacterial Proteins/genetics , Butanones/metabolism , Electrons , Gene Expression Regulation, Bacterial , Metabolic Networks and Pathways , Nicotine/analogs & derivatives , Oxidation-Reduction , Oxidoreductases/genetics , Oxygen/metabolism , Pyridines/metabolism , Recombinant Proteins , Succinates , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL