Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 765
Filter
1.
Asian J Pharm Sci ; 19(4): 100943, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39246510

ABSTRACT

Inflammatory bowel diseases (IBD) significantly contribute to high mortality globally and negatively affect patients' qualifications of life. The gastrointestinal tract has unique anatomical characteristics and physiological environment limitations. Moreover, certain natural or synthetic anti-inflammatory drugs are associated with poor targeting, low drug accumulation at the lesion site, and other side effects, hindering them from exerting their therapeutic effects. Colon-targeted drug delivery systems represent attractive alternatives as novel carriers for IBD treatment. This review mainly discusses the treatment status of IBD, obstacles to drug delivery, design strategies of colon-targeted delivery systems, and perspectives on the existing complementary therapies. Moreover, based on recent reports, we summarized the therapeutic mechanism of colon-targeted drug delivery. Finally, we addressed the challenges and future directions to facilitate the exploitation of advanced nanomedicine for IBD therapy.

2.
Gland Surg ; 13(7): 1214-1228, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39175710

ABSTRACT

Background: Several prospective studies have found that local surgical resection did not improve the survival of patients with de novo metastatic breast cancer (dnMBC). However, a significant portion of dnMBC patients still undergo local surgery, and the role of axillary lymph node dissection (ALND) in dnMBC patients remains unclear. This study aimed to investigate the effect of ALND in patients with dnMBC. Methods: We included patients diagnosed with dnMBC between 2010 and 2020 using the data from the Surveillance, Epidemiology, and End Results program. The Chi-square test, binomial logistic regression, propensity score matching (PSM), Kaplan-Meier method, and multivariate Cox proportional models were employed for statistical analysis. Results: A total of 6,838 patients were identified, with 5,562 (81.3%) in the ALND group and 1,276 (18.7%) in the non-ALND group. Being diagnosed in later years emerged as an independent predictive factor related to the receipt of ALND (P=0.003). Before PSM, the 5-year breast cancer-specific survival (BCSS) was 51.1% and 38.2% in those with and without ALND, respectively (P<0.001). The 5-year overall survival (OS) was 45.9% and 32.3% in those with and without ALND, respectively (P<0.001). ALND was identified as an independent prognostic factor related to better BCSS (P<0.001) and OS (P<0.001) compared to the non-ALND group. Similar findings were observed after PSM. The outcomes were significantly better in the ALND group than in the non-ALND group in most subgroups. However, the number of removed lymph nodes did not show a significant association with BCSS (P=0.27) and OS (P=0.29). Conclusions: Our study suggests that ALND is associated with improved survival outcomes in dnMBC patients. These findings advocate for a re-evaluation of the role of surgical interventions in dnMBC, emphasizing the need for personalized treatment strategies that consider the potential benefits of ALND.

3.
J Ethnopharmacol ; 337(Pt 1): 118761, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39216775

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Blossom of Citrus aurantium L. var. amara Engl. (CAVA) has been popularly consumed as folk medicine and dietary supplement owing to its various beneficial effects and especially anti-obesity potential. Our previous study predicted that eriodictyol was probably one of the key active compounds of the total flavonoids from blossom of CAVA. However, effects of eriodictyol in anti-obesity were still elusive. AIM OF THE STUDY: This study was performed to explore the precise role of eriodictyol in white adipose tissue (WAT) browning and hepatic lipid metabolism, and simultaneously, to verify the impact of eriodictyol on the total flavonoids of CAVA in losing weight. MATERIALS AND METHODS: The pancreas lipase assay was conducted and oleic acid-induced HepG2 cells were established to preliminarily detect the lipid-lowering potential of eriodictyol. Then, high fat diet-induced obesity (DIO) mouse model was established for in vivo studies. The biochemical indicators of mice were tested by commercial kits. The histopathological changes of WAT and liver in mice were tested by H&E staining, Oil Red O staining and Sirius Red staining. Immunohistochemical, Western blot assay, as well as RT-qPCR analysis were further performed. Additionally, molecular docking assay was used to simulate the binding of eriodictyol with potential target proteins. RESULTS: In vitro studies showed that eriodictyol intervention potently inhibited pancreatic lipase activity and reversed hepatic steatosis in oleic acid-induced HepG2 cells. Consistently, long-term medication of eriodictyol also effectively prevented obesity and improved lipid and glucose metabolism in diet-induced obesity mice. Obesity-induced histopathological changes in iWAT, eWAT and BAT, and abnormal expression levels of IL-10, IL-6 and TNF-α in iWAT of DIO mice were also significantly reversed by eriodictyol treatment. Eriodictyol administration significantly and potently promoted browning of iWAT by increasing expression levels of thermogenic marker protein of UCP1, as well as brown adipocyte-specific genes of PGC-1α, SIRT1 and AMPKα1. Further assays revealed that eriodictyol enhanced mitochondrial function, as shown by an increase in compound IV activity and the expression of tricarboxylic acid cycle-related genes. Besides, eriodictyol addition markedly reversed hepatic damages and hepatic inflammation, and enhanced hepatic lipid metabolism in DIO mice, as evidenced by its regulation on p-ACC, CPT1-α, UCP1, PPARα, PGC-1α, SIRT1 and p-AMPKα expression. Molecular docking results further validated that AMPK/SIRT1 pathway was probably the underlying mechanisms by which eriodictyol acted. CONCLUSION: Eriodictyol exhibited significant anti-obesity effect, which was comparable to that of the total flavonoids from blossom of CAVA. These findings furnished theoretical basis for the application of eriodictyol in weight loss.

4.
Adv Healthc Mater ; : e2400524, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39148284

ABSTRACT

Endometrial injury is a major cause of infertility and recurrent miscarriage. However, no clinically available methods currently exist to effectively repair the damaged endometrium. Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic approach for promoting tissue regeneration, yet a biocompatible scaffold capable of delivering MSCs and supporting their growth is needed. Herein, the study reports a peptide hydrogel scaffold, self-assembled from a peptide IVK8-RGD consisting of an ionic complementary peptide sequence IEVEIRVK and a bioactive sequence RGD, to load umbilical cord-derived mesenchymal stem cells (UC-MSCs). This peptide forms a hydrogel under the physiological condition through self-assembly, and the peptide hydrogel exhibits injectability and adhesiveness to uterus, making it suitable for endometrial repair. Importantly, this hydrogel supports the adhesion and proliferation of UC-MSCs in a 3D environment. In vivo experiments using rats with endometrial injury have shown that treatment with IVK8-RGD hydrogel loaded with UC-MSCs effectively restores endometrial thickness, inhibits fibrosis, and facilitates angiogenesis through activating Raf/MEK/ERK pathway, leading to significantly improved fertility and live birth rate. These findings demonstrate the potential of the UC-MSCs-loaded hydrogel in repairing damaged endometrium and may address the unmet clinical needs of treating recurrent miscarriage and infertility induced by endometrial damage.

5.
ACS Omega ; 9(25): 27002-27016, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38947843

ABSTRACT

Liriodendron chinense has been widely utilized in traditional Chinese medicine to treat dispelling wind and dampness and used for alleviating cough and diminishing inflammation. However, the antioxidant, antimicrobial, and anti-inflammatory effects of L. chinense leaves and the key active constituents remained elusive. So, we conducted some experiments to support the application of L. chinense in traditional Chinese medicine by investigating the antioxidant, antibacterial, and anti-inflammatory abilities, and to identify the potential key constituents responsible for the activities. The ethanol extract of L. chinense leaves (LCLE) was isolated and extracted, and assays measuring ferric reducing antioxidant power, total reducing power, DPPH•, ABTS•+, and •OH were used to assess its in vitro antioxidant capacities. Antimicrobial activities of LCLE were investigated by minimal inhibitory levels, minimum antibacterial concentrations, disc diffusion test, and scanning electron microscope examination. Further, in vivo experiments including macro indicators examination, histopathological examination, and biochemical parameters measurement were conducted to investigate the effects of LCLE on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. LCLE was further isolated and purified through column chromatography, and LPS-induced RAW264.7 cells were constructed to assess the diminished inflammation potential of the identified chemical composites. ABTS•+ and •OH radicals were extensively neutralized by the LCLE treatment. LCLE administration also presented broad-spectrum antimicrobial properties, especially against Staphylococcus epidermidis by disrupting cell walls. LPS-induced ALI in mice was significantly ameliorated by LCLE intervention, as evidenced by the histological changes in the lung and liver tissues as well as the reductions of nitric oxide (NO), TNF-α, and IL-6 production. Furthermore, three novel compounds including fragransin B2, liriodendritol, and rhamnocitrin were isolated, purified, and identified from LCLE. These three compounds exhibited differential regulation on NO accumulation and IL-10, IL-1ß, IL-6, TNF-α, COX-2, and iNOS mRNA expression in RAW264.7 cells induced by LPS. Fragransin B2 was more effective in inhibiting TNF-α mRNA expression, while rhamnocitrin was more powerful in inhibiting IL-6 mRNA expression. LCLE had significant antioxidant, antimicrobial, and anti-inflammatory effects. Fragransin B2, liriodendritol, and rhamnocitrin were probably key active constituents of LCLE, which might act synergistically to treat inflammatory-related disorders. This study provided a valuable view of the healing potential of L. chinense leaves in curing inflammatory diseases.

6.
Lipids Health Dis ; 23(1): 231, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080710

ABSTRACT

BACKGROUND: Diabetes mellitus is generally accompanied by dyslipidaemia, but inconsistent relationships between lipid profiles and diabetes are noted. Moreover, genetic variations in insertion/deletion (I/D) polymorphisms at angiotensin-converting enzyme gene (ACE) and T/C polymorphisms in the angiotensin type 1 receptor gene (AGTR1) are related to diabetes and lipid levels, but the associations are controversial. Thus, the current research aimed to explore the effects of ACE I/D, AGTR1 rs5182 and diabetes mellitus on serum lipid profiles in 385 Chinese participants with an average age of 75.01 years. METHODS: The ACE I/D variant was identified using the polymerase chain reaction (PCR) method, whereas the AGTR1 rs5182 polymorphism was identified using the PCR-based restriction fragment length polymorphism (PCR-RFLP) method and verified with DNA sequencing. Total cholesterol (TC), triglyceride (TG), apolipoprotein A (ApoA), apolipoprotein B (ApoB), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) levels were measured using routine methods, and the lipid ratios were calculated. RESULTS: ACE I/D, but not AGTR1 rs5182, was a predictor of TG/HDL-C for the whole study population. Both ACE I/D and AGTR1 rs5182 were predictors of HDL-C and LDL-C levels in females but not in males. Moreover, in females, diabetes mellitus and ACE I/D were identified as predictors of TG and TG/HDL-C, whereas AGTR1 rs5182 and diabetes mellitus were predictors of TG/HDL-C. Moreover, diabetes mellitus and the combination of ACE I/D and AGTR1 rs5182 variations were predictors of TG and TG/HDL-C exclusively in females. CONCLUSIONS: The results demonstrated the potential for gender-dependent interactions of ACE I/D, AGTR1 rs5182, and diabetes on lipid profiles. These findings may serve as an additional explanation for the inconsistent changes of blood lipids in individuals with diabetes mellitus, thereby offering a novel perspective for the clinical management of blood lipid levels in diabetic patients.


Subject(s)
Peptidyl-Dipeptidase A , Receptor, Angiotensin, Type 1 , Humans , Male , Female , Aged , Receptor, Angiotensin, Type 1/genetics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/blood , Polymorphism, Single Nucleotide , Lipids/blood , Lipids/genetics , Asian People/genetics , Triglycerides/blood , Aged, 80 and over , Cholesterol, HDL/blood , Cholesterol, HDL/genetics , Diabetes Mellitus/genetics , Diabetes Mellitus/blood , INDEL Mutation , Cholesterol, LDL/blood , Cholesterol, LDL/genetics , Genetic Association Studies , China/epidemiology , Genetic Predisposition to Disease , East Asian People
7.
NPJ Biofilms Microbiomes ; 10(1): 61, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060267

ABSTRACT

The gut microbiota has been demonstrated to play a significant role in the pathogenesis of Parkinson's disease (PD). However, conflicting findings regarding specific microbial species have been reported, possibly due to confounding factors within human populations. Herein, our current study investigated the interaction between the gut microbiota and host in a non-human primate (NHP) PD model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) using a multi-omic approach and a self-controlled design. Our transcriptomic sequencing of peripheral blood leukocytes (PBL) identified key genes involved in pro-inflammatory cytokine dysregulation, mitochondrial function regulation, neuroprotection activation, and neurogenesis associated with PD, such as IL1B, ATP1A3, and SLC5A3. The metabolomic profiles in serum and feces consistently exhibited significant alterations, particularly those closely associated with inflammation, mitochondrial dysfunctions and neurodegeneration in PD, such as TUDCA, ethylmalonic acid, and L-homophenylalanine. Furthermore, fecal metagenome analysis revealed gut dysbiosis associated with PD, characterized by a significant decrease in alpha diversity and altered commensals, particularly species such as Streptococcus, Butyrivibrio, and Clostridium. Additionally, significant correlations were observed between PD-associated microbes and metabolites, such as sphingomyelin and phospholipids. Importantly, PDPC significantly reduced in both PD monkey feces and serum, exhibiting strong correlation with PD-associated genes and microbes, such as SLC5A3 and Butyrivibrio species. Moreover, such multi-omic differential biomarkers were linked to the clinical rating scales of PD monkeys. Our findings provided novel insights into understanding the potential role of key metabolites in the host-microbiota interaction involved in PD pathogenesis.


Subject(s)
Feces , Gastrointestinal Microbiome , Macaca fascicularis , Animals , Feces/microbiology , Disease Models, Animal , Dysbiosis/microbiology , Male , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Parkinsonian Disorders/microbiology , Parkinsonian Disorders/metabolism , Metabolomics/methods , Metabolome , Host Microbial Interactions , Multiomics
8.
Adv Sci (Weinh) ; 11(32): e2404937, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38962935

ABSTRACT

Anti-cancer peptides (ACPs) represent a promising potential for cancer treatment, although their mechanisms need to be further elucidated to improve their application in cancer therapy. Lycosin-I, a linear amphipathic peptide isolated from the venom of Lycosa singorensis, shows significant anticancer potential. Herein, it is found that Lycosin-I, which can self-assemble into a nanosphere structure, has a multimodal mechanism of action involving lipid binding for the selective and effective treatment of leukemia. Mechanistically, Lycosin-I selectively binds to the K562 cell membrane, likely due to its preferential interaction with negatively charged phosphatidylserine, and rapidly triggers membrane lysis, particularly at high concentrations. In addition, Lycosin-I induces apoptosis, cell cycle arrest in the G1 phase and ferroptosis in K562 cells by suppressing the PI3K-AKT-mTOR signaling pathway and activating cell autophagy at low concentrations. Furthermore, intraperitoneal injection of Lycosin-I inhibits tumor growth of K562 cells in a nude mouse xenograft model without causing side effects. Collectively, the multimodal effect of Lycosin-I can provide new insights into the mechanism of ACPs, and Lycosin-I, which is characterized by high potency and specificity, can be a promising lead for the development of anti-leukemia drugs.


Subject(s)
Leukemia , Mice, Nude , Animals , Mice , Humans , Leukemia/drug therapy , K562 Cells , Apoptosis/drug effects , Spider Venoms/pharmacology , Spider Venoms/chemistry , Disease Models, Animal , Antineoplastic Agents/pharmacology , Signal Transduction/drug effects , Xenograft Model Antitumor Assays , Cell Line, Tumor , Peptides/pharmacology , Antimicrobial Cationic Peptides
9.
Adv Mater ; : e2400166, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39049804

ABSTRACT

Anomalous Hall effect (AHE), one of the most important electronic transport phenomena, generally appears in ferromagnetic materials but is rare in materials without magnetic elements. Here, a study of La3MgBi5 is presented, whose band structure carries multitype Dirac fermions. Although magnetic elements are absent in La3MgBi5, the signals of AHE can be observed. In particular, the anomalous Hall conductivity is extremely large, reaching 42,356 Ω-1 cm-1 with an anomalous Hall angle of 8.8%, the largest one that has been observed in the current AHE systems. The AHE is suggested to originate from the combination of skew scattering and Berry curvature. Another unique property discovered in La3MgBi5 is the axial diamagnetism. The diamagnetism is significantly enhanced and dominates the magnetization in the axial directions, which is the result of the restricted motion of the Dirac fermion at the Fermi level. These findings not only establish La3MgBi5 as a suitable platform to study AHE and quantum transport but also indicate the great potential of 315-type Bi-based materials for exploring novel physical properties.

10.
Int Immunopharmacol ; 137: 112362, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38901248

ABSTRACT

Oroxylin A (OA), a naturally active O-methylated flavone derived from Scutellaria baicalensis, is regarded as a potential drug with strong anticancer effects. Unfortunately, our understanding of the antineoplastic mechanism of oral exposure to such flavonoids is inadequate. Growing evidence has confirmed the important role of OA in the regulation of oxidative stress- and inflammatory-response-induced tissue injury. However, it remains unknown whether OA is capable of mitigating esophagus cancer (EC) progression and its potential molecular mechanism. Furthermore, the tripartite motif containing 40 (TRIM40) is a ubiquitin ligase that mediates the immune response. The potential molecular function of TRIM40 in regulating EC is largely unknown. We confirmed that OA-triggered oxidative stress markedly upregulates TRIM40. During the OA challenge, increased TRIM40 reduced oxidative stress and promoted the ER stress response. Inversely, deletion of TRIM40 facilitated oxidative stress and blocked cancer cell growth in vivo and in vitro. Mechanistically, in response to OA treatment, TRIM40 directly interacts with Keap1 and promotes ubiquitin-proteasome degradation, thus leading to the promotion of Nrf2 nuclear translocation and its downstream cascade activation, which increases antioxidant defense and cell survival. TRIM40 expression was positively correlated with Nrf2 expression and negatively associated with Keap1 expression in EC xenografts and human specimens. In addition, high TRIM40 expression correlates with poor patient survival in EC. The findings suggested that oral exposure to OA significantly mitigates EC development by targeting TRIM40 activity. These findings further elucidated the potential role of TRIM40 in EC progression by mediating Keap1 degradation, which could be considered a therapeutic target for the treatment of such a disease.


Subject(s)
Esophageal Neoplasms , Flavonoids , NF-E2-Related Factor 2 , Oxidative Stress , Signal Transduction , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Humans , Animals , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/drug therapy , Signal Transduction/drug effects , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Flavonoids/pharmacology , Flavonoids/therapeutic use , Mice , Oxidative Stress/drug effects , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Cell Line, Tumor , Male , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Mice, Nude , Mice, Knockout
11.
Water Sci Technol ; 89(11): 3007-3020, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38877627

ABSTRACT

To assess the possibility of using aerobic denitrification (AD) bacteria with high NO2--N accumulation for nitrogen removal in wastewater treatment, conditional optimization, as well as sole and mixed nitrogen source tests involving AD bacterium, Comamonas sp. pw-6 was performed. The results showed that the optimal carbon source, pH, C/N ratio, rotational speed, and salinity for this strain were determined to be succinate, 7, 20, 160 rpm, and 0%, respectively. Further, this strain preferentially utilized NH4+-N, NO3--N, and NO2--N, and when NO3--N was its sole nitrogen source, 92.28% of the NO3--N (150 mg·L-1) was converted to NO2--N. However, when NH4+-N and NO3--N constituted the mixed nitrogen source, NO3--N utilization by this strain was significantly lower (p < 0.05). Therefore, a strategy was proposed to combine pw-6 bacteria with traditional autotrophic nitrification to achieve the application of pw-6 bacteria in NH4+-N-containing wastewater treatment. Bioaugmented application experiments showed significantly higher NH4+-N removal (5.96 ± 0.94 mg·L-1·h-1) and lower NO3--N accumulation (2.52 ± 0.18 mg·L-1·h-1) rates (p < 0.05) than those observed for the control test. Thus, AD bacteria with high NO2--N accumulation can also be used for practical applications, providing a basis for expanding the selection range of AD strains for wastewater treatment.


Subject(s)
Comamonas , Denitrification , Nitrogen , Waste Disposal, Fluid , Wastewater , Nitrogen/metabolism , Comamonas/metabolism , Waste Disposal, Fluid/methods , Wastewater/chemistry , Aerobiosis , Water Purification/methods , Water Pollutants, Chemical/metabolism
12.
Toxicology ; 506: 153838, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38797228

ABSTRACT

Aristolochic acid (AA)-IIIa is an AA analog present in Aristolochiaceae plants. To evaluate the chronic toxicity of AA-IIIa, mice were intragastrically administered with media control, 1 mg/kg AA-IIIa, and 10 mg/kg AA-IIIa, and designated as the control (CTL), AA-IIIa low dose (AA-IIIa-L), and AA-IIIa high dose (AA-IIIa-H) groups, respectively. AA-IIIa was administered three times a week, every other day, for 24 weeks (24-week time point). Thereafter, some mice were sacrificed immediately, while others were sacrificed 29 or 50 weeks after AA-IIIa withdrawal (53- or 74-week time point). Serum and organs were collected for biochemical and pathological analyses, respectively. Whole-genome sequencing was performed on the kidney, liver, and stomach tissues of AA-IIIa-treated mice for single-nucleotide polymorphism (SNP) detection. AA-IIIa-H mice died at 66 weeks, and the remaining mice showed moribund conditions at the 69 weeks. AA-IIIa induced minor kidney tubule injury, fibroblast hyperplasia, and forestomach carcinoma in mice. Bladder, intestine, liver, heart, spleen, lung, and testis tissues were not pathologically altered by AA-IIIa. In addition, AA-IIIa increased the C:G > A:T mutation in the kidney; however, no SNP mutation changes were observed in the liver and forestomach tissues of AA-IIIa-H mice at the 24-week time point compared with control mice. Therefore, we suspect that AA-IIIa is potentially mutagenic for mice after overdose and long-term administration. On the other hand, the forestomach is a unique organ in mice, but it does not exist in humans; thus, we hypothesize that the stomach toxicity induced by AA-IIIa is not a suitable reference for toxicological evaluation in humans. We recommend that Aristolochiaceae plants containing AA-IIIa should be properly supervised, and overdosing and long-term administration of drugs containing AA-IIIa should be avoided.


Subject(s)
Aristolochic Acids , Animals , Aristolochic Acids/toxicity , Mice , Male , Kidney/drug effects , Kidney/pathology , Polymorphism, Single Nucleotide , Female , Liver/drug effects , Liver/pathology , Stomach/drug effects , Stomach/pathology , Toxicity Tests, Chronic/methods , Dose-Response Relationship, Drug
13.
J Ethnopharmacol ; 332: 118320, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38740107

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Kelisha capsules (KLS) are often used to treat acute diarrhoea, bacillary dysentery, heat stroke, and other diseases. One of its components, Asarum, contains aristolochic acid I which is both nephrotoxic and carcinogenic. However, the aristolochic acid (AA) content in KLS and its toxicity remain unclear. AIM OF THE STUDY: The aims of this study were to quantitatively determine the contents of five aristolochic acid analogues (AAAs) in Asarum and KLS, and systematically evaluate the in vivo toxicity of KLS in rats. MATERIALS AND METHODS: Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to determine the content of the five AAAs in Asarum and KLS. Sprague-Dawley rats were administered KLS at 0, 0.75, 1.5, and 3.0 g/kg respectively, and then sacrificed after 4 weeks of administration or after an additional 2 weeks of recovery. The endpoints assessed included body weight measurements, serum biochemistry and haematology indices, and clinical and histopathological observations. RESULTS: The AAAs content in Asarum sieboldii Miq. (HB-ESBJ) were much lower than those of the other Asarums. The contents of AA I, AA IVa, and aristolactam I in KLS were in the ranges of 0.03-0.06 µg/g, 1.89-2.16 µg/g, and 0.55-1.60 µg/g, respectively, whereas AA II and AA IIIa were not detected. None of the rats showed symptoms of toxic reactions and KLS was well tolerated throughout the study. Compared to the control group, the activated partial thromboplastin time values of rats in the 1.5 and 3.0 g/kg groups significantly reduced after administration (P < 0.05). In addition, the serum triglycerides of male rats in the 0.75 and 1.5 g/kg groups after administration, and the 0.75, 1.5, 3.0 g/kg groups after recovery were significantly decreased (P < 0.01 or P < 0.001). No significant drug-related toxicological changes were observed in other serum biochemical indices, haematology, or histopathology. CONCLUSIONS: The AA I content in KLS met the limit requirements (<0.001%) of the Chinese Pharmacopoeia. Therefore, it is safe to use KLS in the short-term. However, for safety considerations, attention should be paid to the effects of long-term KLS administration on coagulation function and triglyceride metabolism.


Subject(s)
Kidney , Rats, Sprague-Dawley , Animals , Male , Administration, Oral , Kidney/drug effects , Kidney/pathology , Rats , Asarum/chemistry , Liver/drug effects , Liver/pathology , Capsules , Aristolochic Acids/toxicity , Aristolochic Acids/administration & dosage , Drugs, Chinese Herbal/toxicity , Drugs, Chinese Herbal/administration & dosage , Female , Tandem Mass Spectrometry
14.
Abdom Radiol (NY) ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755454

ABSTRACT

PURPOSE: To assess the value of orthogonal axial images (OAI) of MRI in gastric cancer T staging. METHODS: This retrospective study enrolled 133 patients (median age, 63 [range, 24-85] years) with gastric adenocarcinoma who underwent both CT and MRI followed by surgery. MRI lacking or incorporating OAI and CT images were evaluated, respectively. Diagnostic performance (accuracy, sensitivity, and specificity) for each T stage, overall diagnostic accuracy and rates of over- and understaging were quantified employing pathological T stage as a reference standard. The McNemar's test was performed to compare the overall accuracy. RESULTS: Among patients with pT1-pT4 disease, MRI with OAI (accuracy: 88.7-94.7%, sensitivity: 66.7-93.0%, specificity: 91.5-100.0%) exhibited superior diagnostic performance compared to MRI without OAI (accuracy: 81.2-88.7%, sensitivity: 46.2-83.1%, specificity: 85.5-99.1%) and CT (accuracy: 88.0-92.5%, sensitivity: 53.3-90.1%, specificity: 88.7-98.1%). The overall accuracy of MRI with OAI was significantly higher (83.5%) than that of MRI without OAI (67.7%) (p < .001). However, there was no significant difference in the overall accuracy of MRI with OAI and CT (78.9%) (p = .35). The over- and understaging rates of MRI with OAI (12.0, 4.5%) were lower than those of MRI without OAI (21.8, 10.5%) and CT (12.8, 8.3%). CONCLUSION: OAI play a pivotal role in the T staging of gastric cancer. MRI incorporating OAI demonstrated commendable performance for gastric cancer T-staging, with a slight tendency toward its superiority over CT.

15.
Anal Chem ; 96(16): 6195-6201, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38607805

ABSTRACT

Single particle collision is an important tool for size analysis at the individual particle level; however, due to complex dynamic behaviors of nanoparticles on the surface of an electrode, the accuracy of size discrimination is limited. A silver (Ag) nanoparticle (NP) was chosen as the research target, and the dynamic behavior of Ag NPs was simplified by enhancing adsorption between Ag NP and Au ultramicroelectrode (UME) in alkaline media. Immediately after, accurate dynamic and thermodynamic information on single Ag NP was accurately extracted from collision events, including current intensity, transferred charge, and duration time. On the basis that there were differences between parameters of different-sized Ag NPs, multiparameter size discrimination was proposed, which improved the accuracy compared to single-parameter discrimination. More intriguingly, multiparameter analysis was combined with artificial intelligence, a tool adept at processing multidimensional data, for the first time. Finally, artificial intelligence-assisted multiparameter size discrimination was successfully used to intelligently distinguish mixed Ag NPs, with an optimal accuracy of more than 95%. To sum up, the artificial intelligence-assisted multiparameter method showed an excellent ability to quickly achieve the most accurate size discrimination of nanoparticles at the level of individual particle and provide an effective guidance for the application of nanoparticles.

16.
World J Diabetes ; 15(3): 378-391, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38591094

ABSTRACT

Gestational diabetes mellitus (GDM) is a pregnancy-related complication characterized by abnormal glucose metabolism in pregnant women and has an important impact on fetal development. As a bridge between the mother and the fetus, the placenta has nutrient transport functions, endocrine functions, etc., and can regulate placental nutrient transport and fetal growth and development according to maternal metabolic status. Only by means of placental transmission can changes in maternal hyperglycemia affect the fetus. There are many reports on the placental pathophysiological changes associated with GDM, the impacts of GDM on the growth and development of offspring, and the prevalence of GDM in offspring after birth. Placental epigenetic changes in GDM are involved in the programming of fetal development and are involved in the pathogenesis of later chronic diseases. This paper summarizes the effects of changes in placental nutrient transport function and hormone secretion levels due to maternal hyperglycemia and hyperinsulinemia on the development of offspring as well as the participation of changes in placental epigenetic modifications due to maternal hyperglycemia in intrauterine fetal programming to promote a comprehensive understanding of the impacts of placental epigenetic modifications on the development of offspring from patients with GDM.

17.
Sci Adv ; 10(14): eadk9754, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578994

ABSTRACT

The lack of bacterial-targeting function in antibiotics and their prophylactic usage have caused overuse of antibiotics, which lead to antibiotic resistance and inevitable long-term toxicity. To overcome these issues, we develop neutrophil-bacterial hybrid cell membrane vesicle (HMV)-coated biofunctional lipid nanoparticles (LNP@HMVs), which are designed to transport antibiotics specifically to bacterial cells at the infection site for the effective treatment and prophylaxis of bacterial infection. The dual targeting ability of HMVs to inflammatory vascular endothelial cells and homologous Gram-negative bacterial cells results in targeted accumulation of LNP@HMVs in the site of infections. LNP@HMVs loaded with the antibiotic norfloxacin not only exhibit enhanced activity against planktonic bacteria and bacterial biofilms in vitro but also achieve potent therapeutic efficacy in treating both systemic infection and lung infection. Furthermore, LNP@HMVs trigger the activation of specific humoral and cellular immunity to prevent bacterial infection. Together, LNP@HMVs provide a promising strategy to effectively treat and prevent bacterial infection.


Subject(s)
Bacterial Infections , Nanoparticles , Humans , Endothelial Cells , Bacterial Infections/drug therapy , Bacterial Infections/prevention & control , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Liposomes
18.
Sci Total Environ ; 927: 172338, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38608897

ABSTRACT

Algal blooms in lakes have been a challenging environmental issue globally under the dual influence of human activity and climate change. Considerable progress has been made in the study of phytoplankton dynamics in lakes; The long-term in situ evolution of dominant bloom-forming cyanobacteria in meso-eutrophic plateau lakes, however, lacks systematic research. Here, the monthly parameters from 12 sampling sites during the period of 1997-2022 were utilized to investigate the underlying mechanisms driving the superiority of bloom-forming cyanobacteria in Erhai, a representative meso-eutrophic plateau lake. The findings indicate that global warming will intensify the risk of cynaobacteria blooms, prolong Microcystis blooms in autumn to winter or even into the following year, and increase the superiority of filamentous Planktothrix and Cylindrospermum in summer and autumn. High RUETN (1.52 Biomass/TN, 0.95-3.04 times higher than other species) under N limitation (TN < 0.5 mg/L, TN/TP < 22.6) in the meso-eutrophic Lake Erhai facilitates the superiority of Dolichospermum. High RUETP (43.8 Biomass/TP, 2.1-10.2 times higher than others) in TP of 0.03-0.05 mg/L promotes the superiority of Planktothrix and Cylindrospermum. We provided a novel insight into the formation of Planktothrix and Cylindrospermum superiority in meso-eutrophic plateau lake with low TP (0.005-0.07 mg/L), which is mainly influenced by warming, high RUETP and their vertical migration characteristics. Therefore, we posit that although the obvious improvement of lake water quality is not directly proportional to the control efficacy of cyanobacterial blooms, the evolutionary shift in cyanobacteria population structure from Microcystis, which thrives under high nitrogen and phosphorus conditions, to filamentous cyanobacteria adapted to low nitrogen and phosphorus levels may serve as a significant indicator of water quality amelioration. Therefore, we suggest that the risk of filamentous cyanobacteria blooms in the meso-eutrophic plateau lake should be given attention, particularly in light of improving water quality and global warming, to ensure drinking water safety.


Subject(s)
Cyanobacteria , Eutrophication , Lakes , Temperature , Lakes/microbiology , Lakes/chemistry , China , Environmental Monitoring , Nitrogen/analysis , Phytoplankton , Climate Change , Seasons , Phosphorus/analysis , Nutrients/analysis , Global Warming
19.
BMC Cancer ; 24(1): 460, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609892

ABSTRACT

BACKGROUND: To predict pathological complete response (pCR) in patients receiving neoadjuvant immunochemotherapy (nICT) for esophageal squamous cell carcinoma (ESCC), we explored the factors that influence pCR after nICT and established a combined nomogram model. METHODS: We retrospectively included 164 ESCC patients treated with nICT. The radiomics signature and hematology model were constructed utilizing least absolute shrinkage and selection operator (LASSO) regression, and the radiomics score (radScore) and hematology score (hemScore) were determined for each patient. Using the radScore, hemScore, and independent influencing factors obtained through univariate and multivariate analyses, a combined nomogram was established. The consistency and prediction ability of the nomogram were assessed utilizing calibration curve and the area under the receiver operating factor curve (AUC), and the clinical benefits were assessed utilizing decision curve analysis (DCA). RESULTS: We constructed three predictive models.The AUC values of the radiomics signature and hematology model reached 0.874 (95% CI: 0.819-0.928) and 0.772 (95% CI: 0.699-0.845), respectively. Tumor length, cN stage, the radScore, and the hemScore were found to be independent factors influencing pCR according to univariate and multivariate analyses (P < 0.05). A combined nomogram was constructed from these factors, and AUC reached 0.934 (95% CI: 0.896-0.972). DCA demonstrated that the clinical benefits brought by the nomogram for patients across an extensive range were greater than those of other individual models. CONCLUSIONS: By combining CT radiomics, hematological factors, and clinicopathological characteristics before treatment, we developed a nomogram model that effectively predicted whether ESCC patients would achieve pCR after nICT, thus identifying patients who are sensitive to nICT and assisting in clinical treatment decision-making.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Neoadjuvant Therapy , Esophageal Squamous Cell Carcinoma/diagnostic imaging , Esophageal Squamous Cell Carcinoma/therapy , Esophageal Neoplasms/diagnostic imaging , Esophageal Neoplasms/drug therapy , Nomograms , Radiomics , Retrospective Studies
20.
Vaccines (Basel) ; 12(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38675792

ABSTRACT

Chitosan, a natural polysaccharide derived from chitin, possesses biocompatibility, biodegradability, and mucoadhesive characteristics, making it an attractive material for the delivery of mRNA payloads to the nasal mucosa and promoting their uptake by target cells such as epithelial and immune cells (e.g., dendritic cells and macrophages). In this project, we aimed at developing novel lipid-based nanoformulations for mRNA delivery to counteract the pandemic caused by SARS-CoV-2 virus. The formulations achieved a mRNA encapsulation efficiency of ~80.2% with chitosan-lipid nanoparticles, as measured by the RiboGreen assay. Furthermore, the evaluation of SARS-CoV-2 Spike (S) receptor-binding domain (RBD) expression via ELISA for our vaccine formulations showed transfection levels in human embryonic kidney cells (HEK 293), lung carcinoma cells (A549), and dendritic cells (DC 2.4) equal to 9.9 ± 0.1 ng/mL (174.7 ± 1.1 fold change from untreated cells (UT)), 7.0 ± 0.2 ng/mL (128.1 ± 4.9 fold change from UT), and 0.9 ± 0.0 ng/mL (18.0 ± 0.1 fold change from UT), respectively. Our most promising vaccine formulation was also demonstrated to be amenable to lyophilization with minimal degradation of loaded mRNA, paving the way towards a more accessible and stable vaccine. Preliminary in vivo studies in mice were performed to assess the systemic and local immune responses. Nasal bronchoalveolar lavage fluid (BALF) wash showed that utilizing the optimized formulation resulted in local antibody concentrations and did not trigger any systemic antibody response. However, if further improved and developed, it could potentially contribute to the management of COVID-19 through nasopharyngeal immunization strategies.

SELECTION OF CITATIONS
SEARCH DETAIL