Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters










Publication year range
1.
Anal Chem ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324752

ABSTRACT

Mercury (Hg) isotopes provide a useful tool to understand Hg sources and processes in the environment. The Hg isotopic composition of seawater remains poorly constrained due to the lack of an efficient method to process large volumes of low-Hg-concentration seawater samples. Here, we develop a continuous flow-double purge and trap device for the in situ preconcentration of Hg in seawater. This method yielded a good Hg recovery of 91.7 ± 3.3% (n = 4, 1SD) for spiked seawater samples and gave reasonably similar Hg isotope ratios of NIST 8610, indicating a limited matrix effect and limited Hg isotope fractionation during processing of seawater. NIST 8610 δ202Hg (-0.55 ± 0.09‰, n = 4, 1SD) and Δ199Hg (0.07 ± 0.02‰, n = 4, 1SD) were similar to previously published data. The method was successfully applied to seawater collected from the Xiamen Bay and the South China Sea. The seawater samples showed a Hg recovery of 91.6 ± 5.4% (n = 12, 1SD). Seawater Δ199Hg (-0.04 ± 0.05‰, n = 7, 1SD) in the Xiamen Bay was different from seawater Δ199Hg (0.05 ± 0.07‰, n = 5, 1SD) in the South China Sea, which implies distinct Hg sources to coastal and open ocean areas and highlights the robustness of our method in understanding the Hg isotopic composition of seawater.

2.
Environ Sci Technol ; 57(40): 15184-15192, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37723101

ABSTRACT

Anthropogenic activities release large quantities of heavy metals into the atmosphere. In China, the input of these heavy metals through local and trans-boundary atmospheric deposition is poorly understood. To assess this issue, herein, we use Pb and Zn isotopes to constrain the sources of Pb and Zn in a 210Pb-dated sediment core collected from the enclosed lake in South China. We observed a progressive shift toward higher 208Pb/206Pb and Pb fluxes (0.79-4.02 µg·cm-2·a-1) from 1850 to 1950 and a consistent decrease in δ66ZnIRMM (as low as -0.097 ± 0.030‰) coupled with an increase in Pb (1.74-3.36 µg·cm-2·a-1) and Zn (8.07-10.44 µg·cm-2·a-1) fluxes after 1980. These distinguished isotopic signals and flux variations reveal the presence of trans-boundary Pb since 1900, with the addition of local industrial Pb and Zn pollution after 1980. Up to 72.3% of Pb deposited at our site can be attributed to long-distance transportation from previously industrialized countries, resulting in a noteworthy legacy of Pb in China since 1900. Despite the phasing out of leaded gasoline, Chinese gasoline still contributes an average of 20.9%. The contribution of China's mining and smelting activities to Pb has increased steadily since 1980 and remained stable at an average of 25.1% since 2000.

3.
Anal Chem ; 95(33): 12290-12297, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37605798

ABSTRACT

Measuring the isotopic composition of Hg in natural waters is challenging due to the ultratrace level of aqueous Hg (ng L-1). At least 5 ng of Hg mass is required for Hg isotopic analysis. Given the low Hg concentration in natural waters, a large volume of water (>10 L) is typically needed. The conventional grab sampling method is time-consuming, laborious, and prone to contamination during transportation and preconcentration steps. In this study, a DGT (diffusive gradients in thin films) method based on aminopropyl and mercaptopropyl bi-functionalized SBA-15 nanoparticles was developed and extended to determine the concentration and isotopic composition of aqueous Hg for the first time. The results of laboratory analysis showed that Hg adsorption by DGT induces ∼ -0.2‰ mass-dependent fractionation (MDF) and little mass-independent fractionation (MIF). The magnitude of MDF exhibits a dependence on the diffusion-layer thickness of DGT. Since Hg-MDF can occur in a broad range of environmental processes, monitoring the δ202Hg of aqueous Hg using the DGT method should be performed with caution. Field results show consistent MIF signatures (Δ199Hg) between the DGT and conventional grab sampling method. The developed DGT method serves as a passive sampling method that effectively characterizes the MIF of Hg in waters to understand the biogeochemical cycle of Hg at contaminated sites.

4.
Environ Sci Pollut Res Int ; 30(23): 64443-64459, 2023 May.
Article in English | MEDLINE | ID: mdl-37067707

ABSTRACT

China's major grain-producing areas (MGPA) policy is the core policy to ensure national food security. While achieving long-term stable growth of grain production, assessing the impact of MGPA policy on agrochemical application has important practical significance in sustainable agricultural development and environmental protection. Based on panel data of 31 provinces in China from 1997 to 2020 and taking the MGPA policy introduced in 2004 as a quasi-natural experiment, we construct a difference-in-difference (DID) model to evaluate the overall impact and dynamic effect of MGPA policy. It is found that the MGPA policy do not exacerbate chemical overuse as a whole, but significantly reduce the fertilizer use by 11% and the pesticide use by 6%. Using the event study to decompose the policy effect year by year, we find that the MGPA policy significantly increased the fertilizer and pesticide use in a short period of time. Its influence on the application amount of two chemicals began to turn negative until the fourth and sixth years of the policy implementation and became more and more obvious. We conclude the intermediate paths of MGPA policy to change planting structure, deepen agricultural division of labor, and reduce the use of agrochemicals, which were verified by the intermediary effect model. From the perspective of provincial differences, MGPA policy reduced chemical use more in provinces with large output contribution and northern provinces. In addition, the MGPA policy has reduced the amount of fertilizer application in major rice-growing provinces, but not the amount of pesticide application. Our research can provide implications for other developing countries and emerging economies where agricultural production is highly dependent on chemicals and has green agricultural transition plans.


Subject(s)
Agrochemicals , Pesticides , Fertilizers , China , Public Policy , Agriculture , Food Security
5.
Environ Int ; 174: 107891, 2023 04.
Article in English | MEDLINE | ID: mdl-36963155

ABSTRACT

Anthropogenic mercury (Hg) emissions have increased significantly since the Industrial Revolution, resulting in severe health impacts to humans. The consumptions of fish and rice were primary human methylmercury (MeHg) exposure pathways in Asia. However, the lifecycle from anthropogenic Hg emissions to human MeHg exposure is not fully understood. In this study, a recently developed approach, termed MeHg Compound-Specific Isotope Analysis (CSIA), was employed to track lifecycle of Hg in four typical Hg-emission areas. Distinct Δ199Hg of MeHg and inorganic Hg (IHg) were observed among rice, fish and hair. The Δ199Hg of MeHg averaged at 0.07 ± 0.15 ‰, 0.80 ± 0.55 ‰ and 0.43 ± 0.29 ‰ in rice, fish and hair, respectively, while those of IHg averaged at - 0.08 ± 0.24 ‰, 0.85 ± 0.43 ‰ and - 0.28 ± 0.68 ‰. In paddy ecosystem, Δ199Hg of MeHg in rice showed slightly positive shifts (∼0.2 ‰) from those of IHg, and comparable Δ199Hg of IHg between rice grain and raw/processed materials (coal, Hg ore, gold ore and sphalerite) were observed. Simultaneously, it was proved that IHg in fish muscle was partially derived from in vivo demethylation of MeHg. By a binary model, we estimated the relative contributions of rice consumption to human MeHg exposure to be 84 ± 14 %, 58 ± 26 %, 52 ± 20 % and 34 ± 15 % on average in Hg mining area, gold mining area, zinc smelting area and coal-fired power plant area, respectively, and positive shifts of δ202HgMeHg from fish/rice to human hair occurred during human metabolic processes. Therefore, the CSIA approach can be an effective tool for tracking Hg biogeochemical cycle and human exposure, from which new scientific knowledge can be generated to support Hg pollution control policies and to protect human health.


Subject(s)
Mercury , Methylmercury Compounds , Oryza , Animals , Humans , Mercury/analysis , Ecosystem , Environmental Monitoring , Methylmercury Compounds/analysis , Isotopes/analysis , Oryza/metabolism , Fishes/metabolism , Coal/analysis
6.
Environ Sci Technol ; 56(18): 13428-13438, 2022 09 20.
Article in English | MEDLINE | ID: mdl-35960609

ABSTRACT

The atmosphere is the primary medium for long-distance transport and transformation of elemental mercury (Hg), a potent neurotoxin. The recent discovery of mass-independent fractionation (MIF) of even-mass Hg isotopes (even-MIF, measured as Δ200Hg and Δ204Hg) in the atmosphere is surprising and can potentially serve as a powerful tracer in understanding Hg biogeochemistry. Far-ultraviolet (UVC) light-induced gas-phase reactions have been suspected as a likely cause for even-MIF, yet the mechanism remains unknown. Here, we present the first experimental evidence of large-scale even-MIF caused by UVC-induced (wavelength: 254 nm) Hg oxidation in synthetic air at the pressure (46-88 kPa) and temperature (233-298 K) resembling those of the lower atmosphere. We observe negatively correlated Δ200Hg and Δ204Hg signatures with values as low as -50‰ and as high as 550‰, respectively, in the remaining atomic Hg pool. The magnitude of even-MIF signatures decreases with decreasing pressure with the Δ200Hg/Δ204Hg ratio being similar to that observed in global precipitation. This even-MIF can be explained by photodissociation of mercuric oxides that are photochemically formed in the UVC-irradiated Hg-O2 system. We propose that similar processes occurring in the atmosphere, where mercuric oxide species serve as intermediates, are responsible for the observed even-MIF in the environment.


Subject(s)
Mercury , Neurotoxins , Chemical Fractionation , Environmental Monitoring , Gases , Isotopes , Mercury/analysis , Mercury Compounds , Mercury Isotopes/analysis , Oxides
7.
Environ Sci Technol ; 56(12): 7997-8007, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35618674

ABSTRACT

Houttuynia cordata Thunb (H. cordata) is a native vegetable colonizing mercury (Hg) mining sites in the southwest of China; it can accumulate high Hg concentrations in the rhizomes and roots (edible sections), and thus consumption of H. cordata represents an important Hg exposure source to human. Here, we studied the spatial distribution, chemical speciation, and stable isotope compositions of Hg in the soil-H. cordata system at the Wuchuan Hg mining region in China, aiming to provide essential knowledge for assessing Hg risks and managing the transfer of Hg from soils to plants and agricultural systems. Mercury was mainly compartmentalized in the outlayer (periderm) of the underground tissues, with little Hg being translocated to the vascular bundle of the stem. Mercury presented as Hg-thiolates (94% ± 8%), with minor fractional amount of nanoparticulate ß-HgS (ß-HgSNP, 15% ± 4%), in the roots and rhizomes. Analysis of Hg stable isotope ratios showed that cysteine-extractable soil Hg pool (δ202Hgcys), root and rhizome Hg (δ202Hgroot, δ202Hgrhizome) were isotopically lighter than Hg in the bulk soils. A significant positive correlation between δ202Hgcys and δ202Hgroot was observed, suggesting that cysteine-extractable soil Hg pool was an important Hg source to H. cordata. The slightly positive Δ199Hg value in the plant (Δ199Hgroot = 0.07 ± 0.07‰, 2SD, n = 21; Δ199Hgrhizome = 0.06 ± 0.06‰, 2SD, n = 22) indicated that minor Hg was sourced from the surface water. Our results are important to assess the risks of Hg in H. cordata, and to develop sustainable methods to manage the transfer of Hg from soils to agricultural systems.


Subject(s)
Houttuynia , Mercury , Soil Pollutants , Cysteine , Environmental Monitoring/methods , Humans , Isotopes , Mercury/analysis , Mercury Isotopes/analysis , Plants , Soil/chemistry , Soil Pollutants/analysis
8.
Nat Commun ; 13(1): 1307, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35264554

ABSTRACT

The sources of isotopically light carbon released during the end-Triassic mass extinction remain in debate. Here, we use mercury (Hg) concentrations and isotopes from a pelagic Triassic-Jurassic boundary section (Katsuyama, Japan) to track changes in Hg cycling. Because of its location in the central Panthalassa, far from terrigenous runoff, Hg enrichments at Katsuyama record atmospheric Hg deposition. These enrichments are characterized by negative mass independent fractionation (MIF) of odd Hg isotopes, providing evidence of their derivation from terrestrial organic-rich sediments (Δ199Hg < 0‰) rather than from deep-Earth volcanic gases (Δ199Hg ~ 0‰). Our data thus provide evidence that combustion of sedimentary organic matter by igneous intrusions and/or wildfires played a significant role in the environmental perturbations accompanying the event. This process has a modern analog in anthropogenic combustion of fossil fuels from crustal reservoirs.


Subject(s)
Mercury , Environmental Monitoring , Geologic Sediments , Isotopes , Mercury/analysis , Mercury Isotopes/analysis , Volcanic Eruptions
9.
Nat Commun ; 13(1): 948, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35177593

ABSTRACT

The geochemical cycle of mercury in Earth's surface environment (atmosphere, hydrosphere, biosphere) has been extensively studied; however, the deep geological cycling of this element is less well known. Here we document distinct mass-independent mercury isotope fractionation (expressed as Δ199Hg) in island arc basalts and mid-ocean ridge basalts. Both rock groups show positive Δ199Hg values up to 0.34‰ and 0.22‰, respectively, which deviate from recent estimates of the primitive mantle (Δ199Hg: 0.00 ± 0.10‰, 2 SD)1. The positive Δ199Hg values indicate recycling of marine Hg into the asthenospheric mantle. Such a crustal Hg isotope signature was not observed in our samples of ocean island basalts and continental flood basalts, but has recently been identified in canonical end-member samples of the deep mantle1, therefore demonstrating that recycling of mercury can affect both the upper and lower mantle. Our study reveals large-scale translithospheric Hg recycling via plate tectonics.

10.
Environ Pollut ; 297: 118818, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35016986

ABSTRACT

Iron (Fe) is an essential nutrient for living organisms and Fe deficiency is a worldwide problem for the health of both rice and humans. Zinc (Zn) contamination in agricultural soils is frequently observed. Here, we studied Fe isotope compositions and transcript levels of Fe transporter genes in rice growing in nutrient solutions having a range of Zn concentrations. Our results show Zn stress reduces Fe uptake by rice and drives its δ56Fe value to that of the nutrient solution. These observations can be explained by the weakened Fe(II) uptake through Strategy I but enhanced Fe(III) uptake through Strategy II due to the competition between Zn and Fe(II) combining with OsIRT1 (Fe(II) transporter) in root, which is supported by the downregulated expression of OsIRT1 and upregulated expression of OsYSL15 (Fe(III) transporter). Using a mass balance box model, we also show excess Zn reduces Fe(II) translocation in phloem and its remobilization from senescent leaf, indicating a competition of binding sites on nicotianamine between Zn and Fe(II). This study provides direct evidence that how Zn regulates Fe uptake and translocation in rice and is of practical significance to design strategies to treat Fe deficiency in rice grown in Zn-contaminated soils.


Subject(s)
Oryza , Biological Transport , Humans , Iron , Iron Isotopes , Oryza/genetics , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/metabolism , Zinc
11.
Nat Commun ; 13(1): 299, 2022 01 13.
Article in English | MEDLINE | ID: mdl-35027546

ABSTRACT

Direct evidence of intense chemical weathering induced by volcanism is rare in sedimentary successions. Here, we undertake a multiproxy analysis (including organic carbon isotopes, mercury (Hg) concentrations and isotopes, chemical index of alteration (CIA), and clay minerals) of two well-dated Triassic-Jurassic (T-J) boundary sections representing high- and low/middle-paleolatitude sites. Both sections show increasing CIA in association with Hg peaks near the T-J boundary. We interpret these results as reflecting volcanism-induced intensification of continental chemical weathering, which is also supported by negative mass-independent fractionation (MIF) of odd Hg isotopes. The interval of enhanced chemical weathering persisted for ~2 million years, which is consistent with carbon-cycle model results of the time needed to drawdown excess atmospheric CO2 following a carbon release event. Lastly, these data also demonstrate that high-latitude continental settings are more sensitive than low/middle-latitude sites to shifts in weathering intensity during climatic warming events.

12.
Sci Total Environ ; 814: 152598, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-34958842

ABSTRACT

Nearshore systems play an important role as mercury (Hg) sources to the open ocean and to human health via fish consumption. The nearshore system along East Asia is of particular concern given the rapid industrialization, which contributes to significant anthropogenic Hg emissions and releases. We used Hg stable isotopes to characterize Hg sources in the sediment and fish along the west coast of Korea, located at the northeast of the East China Sea. The Hg isotope ratios of the west coast sediments (δ202Hg; -0.89 to -0.27‰, Δ199Hg; -0.04 to 0.14‰) were statistically similar with other nearshore sediments (δ202Hg; -0.99 to -0.30‰, Δ199Hg; -0.04 to 0.19‰) and overlapped with the industrial Hg source end-member (δ202Hg; -0.5‰, Δ199Hg; 0.01‰) estimated from the Chinese marginal seas. Using a ternary mixing model, we estimated that industrial Hg sources contribute 83-97% in the west coast of Korea, and riverine and atmospheric Hg sources play minor roles in the Korean west coast and the Chinese marginal seas. The comparison between Hg isotope ratios of the sediment and nearshore fish revealed that the fish in the most west coast sites are exposed to MeHg produced in the sediment. At a few southwest coast sites, external MeHg produced in rivers and the open ocean water column appears to be more important as a source in fish. This is supported by much higher δ202Hg (0.74‰; similar to oceanic fish) and lower δ202Hg (-0.71‰; similar to riverine sources) compared to fish collected from other west coast sites influenced by sedimentary MeHg. The substantial Hg contributions from industrial activities suggest the national policies regulating anthropogenic Hg releases can directly mitigate human Hg exposure originating via local fish consumption. This study contributes to the growing regional and global inventories of Hg fluxes and sources exported into coastal oceans.


Subject(s)
Mercury , Water Pollutants, Chemical , Animals , Environmental Monitoring , Geologic Sediments , Humans , Isotopes , Mercury/analysis , Mercury Isotopes/analysis , Oceans and Seas , Water Pollutants, Chemical/analysis
13.
J Hazard Mater ; 422: 126876, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34416699

ABSTRACT

Selenium (Se), which can be both hazardous and beneficial to plants, animals and humans, plays a pivotal role in regulating soil-plant-human ecosystem functions. The biogeochemical behavior of Se and its environmental impact on the soil-plant-human system has received broad attention in the last decades. This review provides a comprehensive understanding of Se biogeochemistry in the soil-plant-human system. The speciation, transformation, bioavailability as well as the beneficial and hazardous effects of Se in the soil-plant-human system are summarized. Several important aspects in Se in the soil-plant-human system are detailed mentioned, including (1) strategies for biofortification in Se-deficient areas and phytoremediation of soil Se in seleniferous areas; (2) factors affecting Se uptake and transport by plants; (3) metabolic pathways of Se in the human body; (4) the interactions between Se and other trace elements in plant and animals, in particular, the detoxification of heavy metals by Se. Important research hotspots of Se biogeochemistry are outlined, including (1) the coupling of soil microbial activity and the Se biogeochemical cycle; (2) the molecular mechanism of Se metabolic in plants and animals; and (3) the application of Se isotopes as a biogeochemical tracer in research. This review provides up-to-date knowledge and guidelines on Se biogeochemistry research.


Subject(s)
Selenium , Soil Pollutants , Animals , Biodegradation, Environmental , Ecosystem , Humans , Plants , Selenium/toxicity , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity
14.
Environ Sci Technol ; 55(18): 12493-12503, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34468125

ABSTRACT

Monomethylmercury (MMHg) exposure can induce adverse neurodevelopmental effects in humans and is a global environmental health concern. Human exposure to MMHg occurs predominately through the consumption of fishery foods and rice in Asia, but it is challenging to quantify these two exposure sources. Here, we innovatively utilized MMHg compound-specific stable isotope analyses (MMHg-CSIA) of the hair to quantify the human MMHg sources in coastal and inland areas, where fishery foods and rice are routinely consumed. Our data showed that the fishery foods and rice end members had distinct Δ199HgMMHg values in both coastal and inland areas. The Δ199HgMMHg values of the human hair were comparable to those of fishery foods but not those of rice. Positive shifts in the δ202HgMMHg values of the hair from diet were observed in the study areas. Additionally, significant differences in δ202Hg versus Δ199Hg were detected between MMHg and inorganic Hg (IHg) in the human hair but not in fishery foods and rice. A binary mixing model was developed to estimate the human MMHg exposures from fishery foods and rice using Δ199HgMMHg data. The model results suggested that human MMHg exposures were dominated (>80%) by fishery food consumption and were less affected by rice consumption in both the coastal and inland areas. This study demonstrated that the MMHg-CSIA method can provide unique information for tracking human MMHg exposure sources by excluding the deviations from dietary surveys, individual MMHg absorption/demethylation efficiencies, and the confounding effects of IHg.


Subject(s)
Mercury , Methylmercury Compounds , Oryza , Environmental Monitoring , Hair/chemistry , Humans , Isotopes , Mercury/analysis
15.
Environ Pollut ; 288: 117727, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34329067

ABSTRACT

Rice plants accumulate Hg from the soil and ambient air, however, evaluating the contribution of Hg from these two sources remains challenging. Here, we proposed a practical method to predict the contribution of total gaseous mercury (TGM) to Hg in white rice in Wanshan Hg mine area (WMM). In this study, rice was planted in the same low-Hg soil at different sites of WMM with varying TGM levels. Comparing to the control sites at IG (Institute of Geochemistry, Guiyang), TGM is the dominant source of Hg in rice leaves and white rice at TB (Tianba) and ZJW (Zhangjiawan) sites of WMM. Subsequently, a good correlation between the Hg concentrations in rice leaves and the concentration contributions of TGM to Hg in white rice was obtained. Such a correlation enabled feasible quantification of the contribution of TGM to Hg in white rice collected from the Wanshan Hg mine. The contribution of TGM to Hg in white rice across the WMM area was also estimated, demonstrating that white rice receives 14-83% of Hg from the air. Considering the high contribution of TGM to Hg in white rice, we compared the relative health risks of Hg via inhalation and rice consumption and found that inhalation, rather than rice consumption, was the major pathway for bioaccessible Hg exposure in adults at high-TGM sites. This study provides new knowledge of Hg biogeochemistry in Hg-mining areas.


Subject(s)
Mercury , Methylmercury Compounds , Oryza , Soil Pollutants , China , Environmental Monitoring , Gases , Mercury/analysis , Plant Leaves/chemistry , Soil Pollutants/analysis
16.
Chemosphere ; 282: 130947, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34119733

ABSTRACT

To investigate mercury (Hg) sources responsible for contamination at Gumu Creek in South Korea, Hg concentration (THg) and Hg isotope ratios were measured in the soil and sediment of Gumu Creek and the samples from a hazardous waste landfill (HWL). The THg ranged between 0.29-327 mg kg-1 and 9.5-414 mg kg-1 in the soil and sediment, respectively, reflecting heterogeneous distribution and elevated levels across the entire Gumu Creek. Without the soil with the lowest THg (0.30 ± 0.01 mg kg-1, n = 3), the δ202Hg (-0.83 to -0.18‰) and Δ199Hg (-0.24 to 0.01‰) of the sediment and soil of Gumu Creek were within the ranges of the HWL samples (δ202Hg; -1.29 to -0.38‰, Δ199Hg; -0.31 to 0.01‰). The comparison with the literature reporting sediment Hg isotope ratios impacted by various anthropogenic Hg sources revealed a presence of diverse Hg sources at Gumu Creek, including commercial liquid Hg, phenyl-Hg, and fly ash, consistent with the types of waste deposited within the HWL. Using commercial liquid Hg, fly ash, and the soil with the lowest THg as end-members, the ternary mixing model yielded 25-88% and 12-57% contributions from commercial liquid Hg and fly ash to the Gumu Creek sediment, respectively. The results of our study suggest that Hg isotope ratios are an effective tool for screening potential Hg sources at sites where the distribution of Hg is heterogeneous and multiple anthropogenic activities exist.


Subject(s)
Mercury , Environmental Monitoring , Geologic Sediments , Isotopes , Mercury/analysis , Mercury Isotopes/analysis , Soil
17.
Environ Int ; 147: 106336, 2021 02.
Article in English | MEDLINE | ID: mdl-33360410

ABSTRACT

The pathways of human mercury (Hg) exposure are complex and accurate understanding of relative contributions from different pathways are crucial for risk assessment and risk control. In this study, we determined total Hg concentration and Hg isotopic composition of human urine, dietary components, and inhaled air in the Wanshan Hg mining area (MA), Guiyang urban area (UA), and Changshun background area (BA) to understand Hg exposure sources and metabolic processes in human body. At the three studied sites, total gaseous mercury (TGM) showed negative δ202Hg (-3.11‰ to + 1.12‰) and near-zero Δ199Hg (-0.16‰ to + 0.13‰), which were isotopically distinguishable from Hg isotope values of urine (δ202Hg: -4.02‰ to - 0.84‰; Δ199Hg: -0.14‰ to 0.64‰). We observed an offset of -1.01‰ to -1.6‰ in δ202Hg between TGM and urine samples, and an offset of -1.01‰ to 0.80‰ in δ202Hg between rice and urine samples, suggesting that lighter isotopes are more easily accumulated in the kidneys and excreted by urine. We proposed that the high positive Δ199Hg in urine samples of UA was derived from fish consumption. The results of a binary mixing model based on Δ199Hg were compared with those from a classic dietary model. The results from the MIF binary model showed that fish consumption accounted for 22% of urine Hg in the families at UA, whereas fish consumption contributed limited Hg to MA and BA. This study highlighted that Hg isotopes can be a useful tracer in understanding the sources and fates of Hg in human bodies.


Subject(s)
Human Body , Mercury , Animals , China , Environmental Monitoring , Humans , Isotopes , Mercury/analysis , Mercury Isotopes/analysis
18.
Environ Res ; 196: 110362, 2021 05.
Article in English | MEDLINE | ID: mdl-33169691

ABSTRACT

Recent studies have shown that rice consumption can be the major pathway for human methylmercury (MeHg) exposure in inland China. However, few studies have considered the susceptible population of school children's exposure through rice ingestion. In this study, monthly variations in total Hg (THg)/MeHg concentrations in rice, fish, hair, and urine samples were studied to evaluate the Hg (both THg and MeHg) exposure in Guiyang, a typical industrial area with high anthropogenic emission of Hg. A total of 17 primary school (school A) students, 29 middle school (school B) students, and 46 guardians participated in this study for one year. Hair THg, hair MeHg, and urine THg concentrations ranged from 355-413 ng g-1, 213-236 ng g-1, and 469-518 ng g-1 Creatinine (ng·g-1 Cr), respectively, and no significant differences were observed between different genders and age groups. Hair and urine Hg concentrations showed slightly higher values in the cold season (October to February) than the hot season (March to September), but without significant difference. High monthly variability of individual hair and urine Hg concentrations suggested that long-term study could effectively decrease the uncertainty. The school students showed significantly higher urine THg concentrations than adults due to children's unique physiological structure and behaviors. Probable daily intake (PDI) of MeHg via rice and fish ingestion averaged at 0.0091, 0.0090, and 0.0079 µg kg-1 d-1 for school A students, school B students, and their guardians, respectively, which means that 86%, 84%, and 87% of the PDI were originated from rice ingestion, respectively. Therefore, more attention should be paid to children as a susceptible population. The results indicated low risk of Hg exposure via rice and fish consumption for urban residents in a Chinese industrial city.


Subject(s)
Mercury , Methylmercury Compounds , Oryza , Adult , Animals , Child , China , Cities , Environmental Monitoring , Female , Humans , Male , Mercury/analysis , Schools
19.
Environ Pollut ; 267: 115442, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33254682

ABSTRACT

The atmospheric circulation plays a critical role in the global transport and deposition of atmospheric pollutants such as mercury (Hg). Desert dust emissions contribute to nearly 60-95% of the global dust budget and thus, desert dust may facilitate atmospheric Hg transport and deposition to the downwind regions worldwide. The role of desert dust in biogeochemical cycling of Hg, however, has not been well recognized by the Hg research community. In this study, we measured the concentration of particulate bound Hg (HgP) in total suspended particulate (TSP) collected from China's largest desert, Taklimakan Desert, between 2013 and 2017. The results show that HgP concentrations over the Taklimakan Desert atmosphere are remarkably higher than those observed from background sites in China and are even comparable to those measured in most of the Chinese metropolitan cities. Moreover, HgP concentrations in the Taklimakan Desert exhibit a distinct seasonal pattern peaking during dust storm outbreak periods in spring and summer (March to August). A preliminary estimation demonstrates that export of total Hg associated with atmospheric dust from the Taklimakan Desert could be 59.7 ± 60.3 (1SD) Mg yr-1. The unexpectedly high HgP concentrations during duststorms, together with consistent seasonal pattern of Hg revealed from the snow/ice, clearly demonstrate that Asian desert dust could act as a significant carrier of atmospheric Hg to the cryosphere of Western China and even can have further global reach.


Subject(s)
Air Pollutants , Mercury , Atmosphere , China , Cities , Dust , Environmental Monitoring , Humans , Snow
20.
Environ Pollut ; 267: 115588, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33254601

ABSTRACT

Mercury isotope ratios in fish tissues have been used to infer sources and biogeochemical processes of mercury in aquatic ecosystems. More experimental studies are however needed to understand the internal dynamics of mercury isotopes and to further assess the feasibility of using fish mercury isotope ratios as a monitoring tool. We exposed Olive flounder (Paralichthys olivaceus) to food pellets spiked with varying concentrations (400, 1600 ng/g) of methylmercury (MeHg) and inorganic mercury (IHg) for 10 weeks. Total mercury (THg), MeHg concentrations, and mercury isotope ratios (δ202Hg, Δ199Hg, Δ200Hg) were measured in the muscle, liver, kidney, and intestine of fish. Fish fed mercury unamended food pellets and MeHg amended food pellets showed absence of internal δ202Hg and Δ199Hg fractionation in all tissue type. For fish fed IHg food pellets, the δ202Hg and Δ199Hg values of intestine equilibrated to those of the IHg food pellets. Kidney, muscle, and liver exhibited varying degrees of isotopic mixing toward the IHg food pellets, consistent with the degree of IHg bioaccumulation. Liver showed additional positive δ202Hg shifts (∼0.63‰) from the binary mixing line between the unamended food pellets and IHg food pellets, which we attribute to redistribution or biliary excretion of liver IHg with a lower δ202Hg to other tissues. Significant δ202Hg fractionation in the liver and incomplete isotopic equilibration in the muscle indicate that these tissues may not be suitable for source monitoring at sites heavily polluted by IHg. Instead, fish intestine appears to be a more suitable proxy for identifying IHg sources. The results from our study are essential for determining the appropriate fish tissues for monitoring environmental sources of IHg and MeHg.


Subject(s)
Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Animals , Ecosystem , Environmental Monitoring , Fishes , Mercury Isotopes
SELECTION OF CITATIONS
SEARCH DETAIL