Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 53(10): 4564-4573, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38349186

ABSTRACT

A highly efficient phosphor with exceptional luminescence properties is crucial for achieving high-quality solid-state white-light illumination. Here, this paper presents a groundbreaking discovery, an innovative blue-violet emitting Ba1.31Sr3.69(BO3)3Cl:Ce3+ (BSBCl:Ce3+) phosphor designed with remarkable thermal stability and quantum efficiency for full spectrum white light-emitting diodes (WLEDs). By employing a high-temperature solid-phase method, we synthesized various BSBCl:xCe3+ phosphors with different Ce3+ doping concentrations. Remarkably, BSBCl:0.03Ce3+ displays a broad excitation band from 250 nm to 400 nm, rendering it compatible with commercial near-ultraviolet (UV) LED chips. Under 330 nm excitation, this phosphor emits blue light with an astonishing 88.2% internal quantum efficiency (IQE) and an impressive 60.9% external quantum efficiency (EQE). Notably, when employed in the temperature range of 298-473 K, the synthesized BSBCl:0.03Ce3+ phosphor exhibits exceptional color stability and thermal stability (I423 K/I298 K = 83%). Utilizing BSBCl:0.03Ce3+ as the blue-violet emitting component in the fabrication of WLED devices has demonstrated significant advancements in the color rendering index. These findings underscore the potential of BSBCl:Ce3+ phosphors for a wide range of applications in health-oriented indoor illumination.

2.
Adv Mater ; 36(9): e2309500, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37939136

ABSTRACT

There is strong demand for ultraefficient near-infrared (NIR) phosphors with adjustable emission properties for next-generation intelligent NIR light sources. Designing phosphors with large full-width at half-maximum (FWHM) variations is challenging. In this study, novel near-ultraviolet light-emitting diode (LED)-excited NIR phosphors, MgAlGa0.7 B0.3 O4 :Cr3+ (MAGBO:Cr3+ ), with three emission centers achieve ultra-narrowband (FWHM = 29 nm) to ultra-broadband (FWHM = 260 nm) emission with increasing Cr3+ concentration. Gaussian fitting and decay time analysis reveal the alteration in the FWHM, which is attributed to the energy transfer occurring between the three emission centers. The distinct thermal quenching behaviors of the three emission centers are revealed through the temperature-dependent decay times. The ultra-broadband NIR phosphor MAGBO:0.05Cr3+ exhibits high thermal stability (85%, 425 K) and exceptional external quantum efficiency of 68.5%. An NIR phosphor-converted LED (pc-LED) is fabricated using MAGBO:0.05Cr3+ phosphor, exhibiting a remarkable NIR output power of 136 mW at 600 mA in ultra-broadband NIR pc-LEDs. This study describes the preparation of highly efficient phosphors and provides a further understanding of the tunable FWHM, which is vital for high-performance NIR phosphors with versatile applications.

3.
Front Plant Sci ; 14: 1236175, 2023.
Article in English | MEDLINE | ID: mdl-37575943

ABSTRACT

The actin-depolymerizing factor (ADF) encoded by a family of genes is highly conserved among eukaryotes and plays critical roles in the various processes of plant growth, development, and stress responses via the remodeling of the architecture of the actin cytoskeleton. However, the ADF family and the encoded proteins in soybean (Glycine max) have not yet been systematically investigated. In this study, 18 GmADF genes (GmADF1 - GmADF18) were identified in the soybean genome and were mapped to 14 different chromosomes. Phylogenetic analysis classified them into four groups, which was confirmed by their structure and the distribution of conserved motifs in the encoded proteins. Additionally, 29 paralogous gene pairs were identified in the GmADF family, and analysis of their Ka/Ks ratios indicated their purity-based selection during the evolutionary expansion of the soybean genome. The analysis of the expression profiles based on the RNA-seq and qRT-PCR data indicated that GmADFs were diversely expressed in different organs and tissues, with most of them responding actively to drought- and salt-induced stresses, suggesting the critical roles played by them in various biological processes. Overall, our study shows that GmADF genes may play a crucial role in response to various abiotic stresses in soybean, and the highly inducible candidate genes could be used for further functional studies and molecular breeding in soybean.

4.
J Cancer Res Clin Oncol ; 149(13): 12443-12457, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37438540

ABSTRACT

PURPOSE: Colon cancer (CC) is a cancer of the large intestine with high prevalence and poor prognosis. enhancer RNAs. Therefore, valuable tools or biomarkers for predicting patient status, directing clinical practice, and reducing overtreatment are needed. Enhancer RNAs (eRNAs), a class of noncoding RNAs transcribed from enhancers, have been shown to function as regulators of oncogene or tumor suppressor gene expression. The aim of our study was to explore the potential roles of eRNAs and their target enhancer-related genes (ERGs) in the prognosis of CC. METHODS: Selected CC cases (stage I-III) from The Cancer Genome Atlas database were used as a training set, and cases from the Gene Expression Omnibus were used as the validation set. ERGs associated with prognosis were screened through three steps: potential, candidate, and prognosis ERGs. Multivariate Cox proportional hazards analysis was used to identify independent prognostic factors, and a nomogram was created. Calibration curves were drawn by comparing predicted and observed survival probability. For validation, the calibration curves and ROC analysis were also applied to two external validation sets. The biological significance and clinical application of the genes obtained were investigated. RESULTS: Based on the multiple tiers of strict screening, 11 prognostic ERGs were obtained, which were combined to obtain a prognosis signature. A compound nomogram integrating age, TNM classification, and the prognostic signature was constructed. The model was reliable in distinguishing the risk of patients with stage I-III CC, with AUCs of 0.78 and 0.70 at 5 and 7 years, respectively. There was good reproducibility in calibration curves. The prognostic model also yielded good prediction capability in the validation sets. CONCLUSION: In this study, the usefulness and specificity of the ERGs in prognosis were described, which should be considered a key feature in the clinical guidance of CC patients with early stage. We concluded that the major implications of the eRNAs and ERGs should be valued, which would be an emerging hallmark in the prognosis of cancer.


Subject(s)
Colonic Neoplasms , Humans , Reproducibility of Results , Colonic Neoplasms/genetics , Prognosis , Oncogenes , Nomograms , RNA
5.
Inorg Chem ; 61(28): 10642-10651, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35796234

ABSTRACT

In this work, GdOF:RE3+ (RE = Eu, Yb, and Er) phosphors with high thermally stable luminescence were reported, which were synthesized by an ionic liquid-assisted two-phase system and subsequent calcination technique for the first time. Nanodisks, nanorod aggregates, nanoneedles, and stubby nanorods were obtained by simply regulating the pH value. The luminescent properties of precursors and products were discussed in detail. By carefully adjusting the calcination temperature and the pH value of the initial system, pure red emission was achieved in both GdOF:Eu3+ and GdOF:Yb3+, Er3+ phosphors. The reason for distinct luminescent properties of different products was discussed from various perspectives. Moreover, the temperature-dependent spectra were measured and the GdOF:Eu3+ and GdOF:Yb3+, Er3+ products both exhibited outstanding thermal stability. In addition, the as-prepared nanomaterials presented paramagnetic properties, indicating their potential application in both field-emission displays and magnetic resonance imaging technology.

6.
Inorg Chem ; 61(19): 7597-7607, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35503809

ABSTRACT

For inorganic luminescent materials with activators, the energy yield is usually observed to decrease with an increase in activator concentration, which is known as the concentration quenching effect. To inhibit this phenomenon, a common strategy is to increase the distance between activators. Most previous reports have focused on the three-dimensional crystal lattice, and there have been few reports about two-dimensional layered structure. Herein, we synthesized a novel Cr3+-activated near-infrared (NIR) phosphor Li2Sr2Al(PO4)3 (LSAPO) with layered structure, and in such a two-dimensional structure, we proved experimentally that the concentration quenching was suppressed. Under 460 nm excitation, LSAPO:Cr3+ gave a broad NIR emission band (700-1200 nm) centered at 823 nm with a full width at half-maximum (fwhm) of 178 nm and a broad absorption band, indicating its potential application in NIR spectroscopy. Moreover, by codoping Cr3+ and Yb3+ ions, we further widened the emission bandwidth to ∼230 nm of fwhm, the internal quantum efficiency increased from 54% to 61%, and the thermal stability was improved. The fabricated NIR device with a LSAPO:Cr3+,Yb3+ phosphor coupled with blue chips can be applied in night-vision technologies and medical fields.

7.
Dalton Trans ; 50(38): 13459-13467, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34487132

ABSTRACT

Gd2GaSbO7:Cr3+,Yb3+ phosphors with efficient broadband NIR emission were prepared by a solid-state reaction. Under the excitation of 448 nm, the Gd2GaSbO7:Cr3+ (GGS:Cr3+) phosphor exhibits a broadband NIR emission band centered at approximately 770 nm with a full width at half maximum (FWHM) of 160 nm. In addition, Yb3+ codoping can distinctly improve the photoluminescence properties of the GGS:Cr3+ phosphor, leading to broadening of the FWHM and greatly enhancing the thermal stability of the phosphor. Moreover, the energy conversion process of Cr3+ → Yb3+ ions was analyzed in detail, demonstrating that the energy transfer mechanism conformed to electric dipole-dipole interaction. The NIR pc-LEDs assembled with the GGS:Cr3+ phosphor and blue LED chips possessed a maximum NIR output power of ∼21 mW at 100 mA driving current, indicating promising applications of the synthesized phosphor in NIR pc-LEDs.

8.
Dalton Trans ; 50(20): 7017-7025, 2021 May 28.
Article in English | MEDLINE | ID: mdl-33949505

ABSTRACT

Novel single-doped and codoped SrGd2Al2O7-based (SGA) phosphors with tunable emission were synthesized via the solid-state reaction approach. The optimal SGA:0.0008Mn4+ phosphor presents an emission band peaking at 709 nm and shows great red luminescence properties. With the incorporation of Nd3+/Yb3+ into SGA:0.0008Mn4+, an efficient energy transfer Mn4+→ Nd3+/Yb3+ was observed. When Nd3+ and Yb3+ were codoped into SGA:0.0008Mn4+, an energy transfer mechanism from Mn4+ to Nd3+ to Yb3+ was found on the basis of the energy transfer mediation of Nd3+ connecting the Mn4+ and Yb3+ luminescent centers. It results in a strong near-infrared emission in the spectral region of high response of c-Si solar cells, which suggests a potential approach to improve the energy conversion efficiency of c-Si solar cells. The findings offer a novel route to design new down-conversion luminescent materials for the c-Si solar cells.

9.
ACS Omega ; 6(9): 6414-6423, 2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33718732

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) is mainly transmitted by sexual intercourse, and effective microbicides preventing HIV-1 transmission are still required. Amphibian skin is a rich source of defense peptides with antiviral activity. Here, we characterized a lectin-like peptide, fejerlectin (RLCYMVLPCP), isolated from the skin of the frog Fejervarya limnocharis. Fejerlectin showed significant hemagglutination and d-(+)-galacturonic acid-binding activities. Furthermore, fejerlectin suppressed the early entry of HIV-1 into target cells by binding to the N-terminal heptad repeat of HIV-1 gp41 and preventing 6-HB formation and Env-mediated membrane fusion. Fejerlectin is the smallest lectin-like peptide identified to date and represents a new and promising platform for anti-HIV-1 drug development.

10.
Dalton Trans ; 50(4): 1366-1373, 2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33427283

ABSTRACT

A variety of Bi3+-activated and Bi3+-Eu3+ codoped Y3GaO6 phosphor samples were obtained by solid-state reaction. The phase purity and crystal structure of the specimens were characterized via powder X-ray diffraction (XRD) analysis and Rietveld refinement. For the single Bi3+-doped Y3GaO6 phosphor, two different PL peaks at 410 and 595 nm were obtained, resulting from the two different Bi3+ sites occupied. The site occupation is driven by Bi3+ ion concentration. There is an energy transfer from the Bi3+ to Eu3+ ions in the YGO:Bi3+,Eu3+ phosphors. Besides, the energy transfer mechanism, efficiencies, quantum efficiency and thermal stability have been discussed in detail, demonstrating that the sample possesses high quantum efficiency and good thermal stability. The high color-rendering index Ra (92.9, and 81.6) and low CCT (3286 K, and 3904 K) of the white light-emitting diodes (WLEDs) clearly indicate that these samples are promising candidates for WLEDs.

11.
Inorg Chem ; 59(21): 15969-15976, 2020 Nov 02.
Article in English | MEDLINE | ID: mdl-33054208

ABSTRACT

Dual-emitting and thermochromic manganese ion single doped ZnGa2-yAlyO4 phosphors were prepared by solid-state reaction. The regulation of the valence state and the luminescent properties, especially the luminescent thermal stability of manganese ions in ZnGa2-yAlyO4, are discussed in detail. When excited by ultraviolet (UV) light, the emission spectra of ZnGa2O4:Mn2+,Mn4+ present an ultranarrow green emission band at 503 nm with a fwhm of 22 nm, which derives from the Mn2+ ions formed by the self-reduction of doped Mn4+, and a red emission band of the Mn4+ ions at 669 nm. In addition, a ZnGa2-yAlyO4:Mn2+,Mn4+ solid solution was designed and synthesized by Al3+ replacing Ga3+. The doping of Al3+ effectively inhibited the degree of Mn4+ self-reduction to Mn2+, thus realizing the regulation of valence state of manganese ions. Interestingly, the thermal stability of luminescence shows that the response of Mn2+ and Mn4+ to temperature is obviously different in ZnGa2-yAlyO4, implying the potential of the prepared phosphors as optical thermometers. Subsequently, three kinds of optical thermometers with superior color discrimination and high relative sensitivity (Sr) based on the fluorescence intensity ratio (FIR) technique were realized in 100-475 K. The Sr value of ZGO:0.005Mn/ZGA0.5O:0.005Mn/ZGAO:0.005Mn phosphors can be as high as 4.345%/4.001%/3.488% K-1 (at 350/325/400 K), reflecting the great potential of ZnGa2O4:Mn2+,Mn4+ for optical thermometry applications.

12.
Retrovirology ; 15(1): 49, 2018 07 16.
Article in English | MEDLINE | ID: mdl-30012153

ABSTRACT

BACKGROUND: Semen is a critical vector for human immunodeficiency virus (HIV) sexual transmission and harbors seminal amyloid fibrils that can markedly enhance HIV infection. Semen-derived enhancer of viral infection (SEVI) is one of the best-characterized seminal amyloid fibrils. Due to their highly cationic properties, SEVI fibrils can capture HIV virions, increase viral attachment to target cells, and augment viral fusion. Some studies have reported that myricetin antagonizes amyloid ß-protein (Aß) formation; myricetin also displays strong anti-HIV activity in vitro. RESULTS: Here, we report that myricetin inhibits the formation of SEVI fibrils by binding to the amyloidogenic region of the SEVI precursor peptide (PAP248-286) and disrupting PAP248-286 oligomerization. In addition, myricetin was found to remodel preformed SEVI fibrils and to influence the activity of SEVI in promoting HIV-1 infection. Moreover, myricetin showed synergistic effects against HIV-1 infection in combination with other antiretroviral drugs in semen. CONCLUSIONS: Incorporation of myricetin into a combination bifunctional microbicide with both anti-SEVI and anti-HIV activities is a highly promising approach to preventing sexual transmission of HIV.


Subject(s)
Flavonoids/pharmacology , HIV Infections/metabolism , HIV Infections/virology , HIV-1/drug effects , HIV-1/physiology , Host-Pathogen Interactions , Semen/metabolism , Amyloid/antagonists & inhibitors , Amyloid/chemistry , Amyloid/metabolism , Anti-HIV Agents/pharmacology , Cell Line , Dose-Response Relationship, Drug , Drug Synergism , Flavonoids/chemistry , Flavonoids/metabolism , Humans , Male , Models, Molecular , Molecular Conformation , Protein Aggregates/drug effects , Protein Binding , Protein Multimerization , Semen/chemistry , Virion/metabolism , Virus Attachment/drug effects
13.
FEBS Lett ; 592(13): 2361-2377, 2018 07.
Article in English | MEDLINE | ID: mdl-29802645

ABSTRACT

HIV-1 transmembrane protein gp41 plays a crucial role by forming a stable six-helix bundle during HIV entry. Due to highly conserved sequence of gp41, the development of an effective and safe small-molecule compound targeting gp41 is a good choice. Currently, natural polyanionic ingredients with anti-HIV activities have aroused concern. Here, we first discovered that a glycosylated dihydrochalcone, trilobatin, exhibited broad anti-HIV-1 activity and low cytotoxicity in vitro. Site-directed mutagenesis analysis suggested that the hydrophobic residue (I564) located in gp41 pocket-forming site is pivotal for anti-HIV activity of trilobatin. Furthermore, trilobatin displayed synergistic anti-HIV activities combined with other antiretroviral agents. Trilobatin has a good potential to be developed as a small-molecule HIV-1 entry inhibitor for clinical combination therapy.


Subject(s)
Anti-HIV Agents/therapeutic use , Flavonoids/therapeutic use , HIV Envelope Protein gp41/antagonists & inhibitors , HIV-1/drug effects , Polyphenols/therapeutic use , Virus Internalization/drug effects , Animals , Anti-HIV Agents/pharmacology , CHO Cells , Cells, Cultured , Cricetinae , Cricetulus , Drug Evaluation, Preclinical , Flavonoids/pharmacology , HEK293 Cells , HIV Envelope Protein gp41/metabolism , HIV Infections/drug therapy , HIV-1/physiology , Humans , Hydrophobic and Hydrophilic Interactions , Molecular Targeted Therapy , Polyphenols/pharmacology
14.
Microb Pathog ; 107: 98-105, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28323153

ABSTRACT

Infectious spleen and kidney necrosis virus (ISKNV) is one of the major epidemiological agents that had caused great economic loss in Chinese perch (Siniperca chuatsi). In this study, a specific TaqMan real-time PCR was developed using a pair of primers and a TaqMan probe specific to the ORF007 gene of ISKNV to rapidly detect ISKNV copies in Chinese perch samples. This assay was optimized to produce linearity from 8.75 × 108 to 8.75 × 101 copies in standard curve with an efficiency of 98% and a R2 value of 0.9999. Moreover, the minimum detection limit of this assay was 10,000 times more sensitive than that of conventional PCR method. The coefficients of variation of intra- and inter-assay repeatability were less than 2.4% and 3.3%, respectively. The viral distribution in different tissues of diseased Chinese perch was evaluated by TaqMan real-time PCR method and the highest level of viral copies was detected in spleen. Among the 76 diseased Chinese perch clinical samples, 35 and 29 were positive samples based on the TaqMan real-time PCR and conventional PCR methods, respectively, indicating that the TaqMan real-time PCR was more sensitive than conventional PCR. Therefore, the TaqMan real-time PCR should be a useful tool for the early surveillance and quantitation of ISKNV.


Subject(s)
Fish Diseases/diagnosis , Kidney/virology , Necrosis/virology , Perciformes/virology , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/veterinary , Spleen/virology , Animals , Cell Line , China , DNA Primers/genetics , DNA Virus Infections/diagnosis , DNA Virus Infections/veterinary , DNA Virus Infections/virology , Fish Diseases/virology , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL