Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(20): 26374-26385, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38716706

ABSTRACT

Metal-organic frameworks (MOFs), which are composed of crystalline microporous materials with metal ions, have gained considerable interest as promising substrate materials for surface-enhanced Raman scattering (SERS) detection via charge transfer. Research on MOF-based SERS substrates has advanced rapidly because of the MOFs' excellent structural tunability, functionalizable pore interiors, and ultrahigh surface-to-volume ratios. Compared with traditional noble metal SERS plasmons, MOFs exhibit better biocompatibility, ease of operation, and tailorability. However, MOFs cannot produce a sufficient limit of detection (LOD) for ultrasensitive detection, and therefore, developing an ultrasensitive MOF-based SERS substrate is imperative. To the best of our knowledge, this is the first study to develop an MOFs/heterojunction structure as an SERS enhancing material. We report an in situ ZIF-67/Co(OH)2 heterojunction-based nanocellulose paper (nanopaper) plate (in situ ZIF-67 nanoplate) as a device with an LOD of 0.98 nmol/L for Rhodamine 6G and a Raman enhancement of 1.43 × 107, which is 100 times better than that of the pure ZIF-67-based SERS substrate. Further, we extend this structure to other types of MOFs and develop an in situ HKUST-1 nanoplate (with HKUST-1/Cu(OH)2). In addition, we demonstrate that the formation of heterojunctions facilitates efficient photoinduced charge transfer for SERS detection by applying the Mx(OH)y-assisted (where M = Co, Cu, or other metals) MOFs/heterojunction structure. Finally, we successfully demonstrate the application of medicine screening on our nanoplates, specifically for omeprazole. The nanoplates we developed still maintain the tailorability of MOFs and perform high anti-interference ability. Our approach provides customizing options for MOF-based SERS detection, catering to diverse possibilities in future research and applications.

2.
Anal Chim Acta ; 1301: 342447, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38553119

ABSTRACT

BACKGROUND: Alzheimer's disease (AD), one of the most prevalent neurodegenerative diseases, results in severe cognitive decline and irreversible memory loss. Early detection of AD is significant to patients for personalized intervention since effective cure and treatment methods for AD are still lacking. Despite the severity of the disease, existing highly sensitive AD detection methods, including neuroimaging and brain deposit-positive lesion tests, are not suitable for screening purposes due to their high cost and complicated operation. Therefore, these methods are unsuitable for early detection, especially in low-resource settings. Although regular paper-based microfluidics are cost-efficient for AD detection, they are restricted by a poor limit of detection (LOD). RESULTS: To address the above limitations, we report the ultrasensitive and low-cost nanocellulose paper (nanopaper)-based analytical microfluidic devices (NanoPADs) for detecting one of the promising AD blood biomarkers (glial fibrillary acidic protein, GFAP) using Surface-enhanced Raman scattering (SERS) immunoassay. Nanopaper offers advantages as a SERS substrate, such as an ultrasmooth surface, high optical transparency, and tunable chemical properties. We detected the target GFAP in artificial serum, achieving a LOD of 150 fg mL-1. SIGNIFICANCE: The developed NanoPADs are distinguished by their cost-efficiency and ease of implementation, presenting a promising avenue for effective early detection of AD's GFAP biomarker with ultrahigh sensitivity. More importantly, our work provides the experimental routes for SERS-based immunoassay of biomarkers on NanoPADs for various diseases in the future.


Subject(s)
Alzheimer Disease , Biosensing Techniques , Metal Nanoparticles , Humans , Alzheimer Disease/diagnosis , Biosensing Techniques/methods , Metal Nanoparticles/chemistry , Immunoassay/methods , Spectrum Analysis, Raman/methods , Biomarkers
3.
Chempluschem ; 89(5): e202300704, 2024 May.
Article in English | MEDLINE | ID: mdl-38363060

ABSTRACT

Nanocomposite represents the backbone of many industrial fabrication applications and exerts a substantial social impact. Among these composites, metal nanostructures are often employed as the active constituents, thanks to their various chemical and physical properties, which offer the ability to tune the application scenarios in thermal management, energy storage, and biostable materials, respectively. Nanocellulose, as an emerging polymer substrate, possesses unique properties of abundance, mechanical flexibility, environmental friendliness, and biocompatibility. Based on the combination of flexible nanocellulose with specific metal fillers, the essential parameters involving mechanical strength, flexibility, anisotropic thermal resistance, and conductivity can be enhanced. Nowadays, the approach has found extensive applications in thermal management, energy storage, biostable electronic materials, and piezoelectric devices. Therefore, it is essential to thoroughly correlate cellulose nanocomposites' properties with different metallic fillers. This review summarizes the extraction of nanocellulose and preparation of metal modified cellulose nanocomposites, including their wide and particular applications in modern advanced devices. Moreover, we also discuss the challenges in the synthesis, the emerging designs, and unique structures, promising directions for future research. We wish this review can give a valuable overview of the unique combination and inspire the research directions of the multifunctional nanocomposites using proper cellulose and metallic fillers.

4.
J Vis Exp ; (200)2023 10 06.
Article in English | MEDLINE | ID: mdl-37870309

ABSTRACT

Nanopaper, derived from nanofibrillated cellulose, has generated considerable interest as a promising material for microfluidic applications. Its appeal lies in a range of excellent qualities, including an exceptionally smooth surface, outstanding optical transparency, a uniform nanofiber matrix with nanoscale porosity, and customizable chemical properties. Despite the rapid growth of nanopaper-based microfluidics, the current techniques used to create microchannels on nanopaper, such as 3D printing, spray coating, or manual cutting and assembly, which are crucial for practical applications, still possess certain limitations, notably susceptibility to contamination. Furthermore, these methods are restricted to the production of millimeter-sized channels. This study introduces a straightforward process that utilizes convenient plastic micro-molds for simple microembossing operations to fabricate microchannels on nanopaper, achieving a minimum width of 200 µm. The developed microchannel outperforms existing approaches, achieving a fourfold improvement, and can be fabricated within 45 min. Furthermore, fabrication parameters have been optimized, and a convenient quick-reference table is provided for application developers. The proof-of-concept for a laminar mixer, droplet generator, and functional nanopaper-based analytical devices (NanoPADs) designed for Rhodamine B sensing using surface-enhanced Raman spectroscopy was demonstrated. Notably, the NanoPADs exhibited exceptional performance with improved limits of detection. These outstanding results can be attributed to the superior optical properties of nanopaper and the recently developed accurate microembossing method, enabling the integration and fine-tuning of the NanoPADs.


Subject(s)
Microfluidics , Nanofibers , Microfluidics/methods , Cellulose/chemistry , Spectrum Analysis, Raman
5.
Micromachines (Basel) ; 14(7)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37512650

ABSTRACT

The Caenorhabditis elegans (C. elegans) is an ideal model organism for studying human diseases and genetics due to its transparency and suitability for optical imaging. However, manually sorting a large population of C. elegans for experiments is tedious and inefficient. The microfluidic-assisted C. elegans sorting chip is considered a promising platform to address this issue due to its automation and ease of operation. Nevertheless, automated C. elegans sorting with multiple parameters requires efficient identification technology due to the different research demands for worm phenotypes. To improve the efficiency and accuracy of multi-parameter sorting, we developed a deep learning model using You Only Look Once (YOLO)v7 to detect and recognize C. elegans automatically. We used a dataset of 3931 annotated worms in microfluidic chips from various studies. Our model showed higher precision in automated C. elegans identification than YOLOv5 and Faster R-CNN, achieving a mean average precision (mAP) at a 0.5 intersection over a union (mAP@0.5) threshold of 99.56%. Additionally, our model demonstrated good generalization ability, achieving an mAP@0.5 of 94.21% on an external validation set. Our model can efficiently and accurately identify and calculate multiple phenotypes of worms, including size, movement speed, and fluorescence. The multi-parameter identification model can improve sorting efficiency and potentially promote the development of automated and integrated microfluidic platforms.

SELECTION OF CITATIONS
SEARCH DETAIL
...