Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Type of study
Language
Publication year range
1.
Heliyon ; 10(9): e30059, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38707283

ABSTRACT

Four species of dominant wild animals, namely, Prionailurus bengalensis euptilurus, Nyctereutes procyonoides koreensis, Hydropotes inermis argyropus, and Sus scrofa coreanus, are hosts of potential infectious agents, including helminths and protozoa. Therefore, it is necessary to analyze the infectious agents present in these wild animals to monitor and control the spread of pathogens. In the present study, fecal samples from 51 wild animals were collected from the mountains of Yangpyeong, Hoengseong, and Cheongyang in South Korea and metabarcoding of the V9 region of the 18S rRNA gene was performed to identify various parasite species that infect these wild animals. Genes from nematodes, such as Metastrongylus sp., Strongyloides spp., Ancylostoma sp., and Toxocara sp., were detected in the fecal samples from wild animals. In addition, platyhelminthes, including Spirometra sp., Echinostomatidae gen. sp., Alaria sp., Neodiplostomum sp., and Clonorchis sp., and protozoa, including Entamoeba sp., Blastocystis sp., Isospora sp., Tritrichomonas sp., Pentatrichomonas sp., and Cryptosporidium sp., were detected. In the present study, various parasites infecting wild animals were successfully identified using metabarcoding. Our technique may play a crucial role in monitoring parasites within wild animals, especially those causing zoonoses.

2.
Microbiol Spectr ; 12(7): e0380923, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38809007

ABSTRACT

Lovebugs appeared in large numbers across a wide area in Seoul, South Korea, in June 2023. The sudden appearance of exotic insects not only discomforts people but also fosters anxiety, as their potential for pathogen transmission would be unknown. In this study, targeted next-generation sequencing (NGS) of the 16S rRNA gene V4 region was performed using iSeq 100 to screen for bacteria in lovebugs. Forty-one lovebugs (20 females and 21 males) collected in Seoul, Korea, were identified as Plecia longiforceps based on mitochondrial cytochrome oxidase subunit 1 sequencing data using PCR. We analyzed the microbiome of the lovebugs and detected 453 species of bacteria. Among all bacteria screened based on NGS, Rickettsia was detected in all samples with an average relative abundance of 80.40%, followed by Pandoraea and Ewingella. Diversity (alpha and beta) between females and males did not differ; however, only Tumebacillus showed a higher relative abundance in females. Sequencing analysis of Rickettsia using a gltA gene-specific primer by PCR showed that it had higher sequence similarity to the Rickettsia symbiont of arthropods than to the spotted fever group rickettsiae. Eleven samples in which Pandoraea was detected by iSeq 100 were confirmed by PCR and exhibited 100% sequence identity to Pandoraea oxalativorans strain DSM 23570. Consequently, the likelihood of pathogen transmission to humans is low. The applied method may play a crucial role in swiftly identifying bacterial species in the event of future outbreaks of exotic insects that may be harmful to humans.IMPORTANCELovebugs have recently emerged in large numbers in Seoul, causing major concern regarding potential health risks. By performing the next-generation sequencing of the 16S rRNA gene V4 region, we comprehensively examined the microbiome of these insects. We identified the presence of numerous bacteria, including Rickettsia and Pandoraea. Reassuringly, subsequent tests confirmed that these detected bacteria were not pathogenic. The present study addresses health concerns related to lovebugs and shows the accuracy and efficiency of our detection technique. Such methods prove invaluable for rapidly identifying bacterial species during potential outbreaks of unfamiliar insects, thereby ensuring public safety.


Subject(s)
Bacteria , Microbiota , RNA, Ribosomal, 16S , Rickettsia , Animals , Microbiota/genetics , Female , Male , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Rickettsia/genetics , Rickettsia/isolation & purification , Rickettsia/classification , High-Throughput Nucleotide Sequencing , Republic of Korea , Seoul , Phylogeny
3.
Biochem Biophys Rep ; 38: 101659, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38352245

ABSTRACT

Proinflammatory cytokine plays a central role in host defense and acute inflammatory responses. Both positive and negative correlations of NF-κB and Wnt/ß-catenin pathways have been reported depending on cell types in response to inflammatory stimuli for IL-6 cytokine production. Macrophages are vital to the regulation of immune responses and the development of inflammation, but the crosstalk between two pathways has not been elucidated so far in macrophages. We observed a positive cross-regulation between the NF-κB and Wnt/ß-catenin pathways for IL-6 production in human macrophages. To verify the functional validity of this interaction, LY294002 or PNU74654, representative blockers of each pathway, were treated. IL-6 secretion was reduced to the basal level by both inhibitor treatments, even when stimulated by LPS. We also found that NF-κB p65 migrated to the nucleus and interacted with the transcription factor TCF-4 in macrophages upon LPS stimulation.

SELECTION OF CITATIONS
SEARCH DETAIL