Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Food Chem ; 460(Pt 2): 140616, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39094340

ABSTRACT

Drynaria rhizome (DR) is used as a natural remedy to ameliorate obesity (OB) in East Asia; in parallel, the gut microbiota (GM) might exert a positive impact on OB through their metabolites. This study elucidates the orchestrated effects of DR and GM on OB. DR-GM, - a key signaling pathway-target-metabolite (DGSTM) networks were used to unveil the relationship between DR and GM, and Molecular Docking Test (MDT) and Density Functional Theory (DFT) were adopted to underpin the uppermost molecules. The NR1H3 (target) - 3-Epicycloeucalenol (ligand), and PPARG (target) - Clionasterol (ligand) conjugates from DR, FABP3 (target) - Ursodeoxycholic acid, FABP4 (target) - Lithocholic acid (ligand) or Deoxycholic acid (ligand), PPARA (target) - Equol (ligand), and PPARD (target) - 2,3-Bis(3,4-dihydroxybenzyl)butyrolactone (ligand) conjugates from GM formed the most stable conformers via MDT and DFT. Overall, these findings suggest that DR-GM might be a promising ameliorator on PPAR signaling pathway against OB.

2.
Clin Mol Hepatol ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39048520

ABSTRACT

Background/Aims: Shifts in the gut microbiota and metabolites are interrelated with liver cirrhosis progression and complications. However, causal relationships have not been evaluated comprehensively. Here, we identified complication-dependent gut microbiota and metabolic signatures in patients with liver cirrhosis. Methods: Microbiome taxonomic profiling was performed on 194 stool samples (52 controls and 142 cirrhosis patients) via V3-V4 16S rRNA sequencing. Next, 51 samples (17 controls and 34 cirrhosis patients) were selected for fecal metabolite profiling via gas chromatography mass spectrometry and liquid chromatography coupled to time-of-flight-mass spectrometry. Correlation analyses were performed targeting the gut- microbiota, metabolites, clinical parameters, and presence of complications (varices, ascites, peritonitis, encephalopathy, hepatorenal syndrome, hepatocellular carcinoma, and deceased). Results: Veillonella bacteria, Ruminococcus gnavus, and Streptococcus pneumoniae are cirrhosis-related microbiotas compared with control group. Bacteroides ovatus, Clostridium symbiosum, Emergencia timonensis, Fusobacterium varium, and Hungatella_uc were associated with complications in the cirrhosis group. The areas under the receiver operating characteristic curve (AUROCs) for the diagnosis of cirrhosis, encephalopathy, hepatorenal syndrome, and deceased were 0.863, 0.733, 0.71, and 0.69, respectively. The AUROCs of mixed microbial species for the diagnosis of cirrhosis and complication were 0.808 and 0.847, respectively. According to the metabolic profile, 5 increased fecal metabolites in patients with cirrhosis were biomarkers (AUROC > 0.880) for the diagnosis of cirrhosis and complications. Clinical markers were significantly correlated with the gut microbiota and metabolites. Conclusion: Cirrhosis-dependent gut microbiota and metabolites present unique signatures that can be used as noninvasive biomarkers for the diagnosis of cirrhosis and its complications.

3.
Sci Rep ; 14(1): 16122, 2024 07 12.
Article in English | MEDLINE | ID: mdl-38997279

ABSTRACT

Alcoholic-associated liver disease (ALD) and metabolic dysfunction-associated steatotic liver disease (MASLD) show a high prevalence rate worldwide. As gut microbiota represents current state of ALD and MASLD via gut-liver axis, typical characteristics of gut microbiota can be used as a potential diagnostic marker in ALD and MASLD. Machine learning (ML) algorithms improve diagnostic performance in various diseases. Using gut microbiota-based ML algorithms, we evaluated the diagnostic index for ALD and MASLD. Fecal 16S rRNA sequencing data of 263 ALD (control, elevated liver enzyme [ELE], cirrhosis, and hepatocellular carcinoma [HCC]) and 201 MASLD (control and ELE) subjects were collected. For external validation, 126 ALD and 84 MASLD subjects were recruited. Four supervised ML algorithms (support vector machine, random forest, multilevel perceptron, and convolutional neural network) were used for classification with 20, 40, 60, and 80 features, in which three nonsupervised ML algorithms (independent component analysis, principal component analysis, linear discriminant analysis, and random projection) were used for feature reduction. A total of 52 combinations of ML algorithms for each pair of subgroups were performed with 60 hyperparameter variations and Stratified ShuffleSplit tenfold cross validation. The ML models of the convolutional neural network combined with principal component analysis achieved areas under the receiver operating characteristic curve (AUCs) > 0.90. In ALD, the diagnostic AUC values of the ML strategy (vs. control) were 0.94, 0.97, and 0.96 for ELE, cirrhosis, and liver cancer, respectively. The AUC value (vs. control) for MASLD (ELE) was 0.93. In the external validation, the AUC values of ALD and MASLD (vs control) were > 0.90 and 0.88, respectively. The gut microbiota-based ML strategy can be used for the diagnosis of ALD and MASLD.ClinicalTrials.gov NCT04339725.


Subject(s)
Gastrointestinal Microbiome , Machine Learning , Humans , Male , Female , Middle Aged , Adult , Algorithms , Liver Diseases, Alcoholic/microbiology , Liver Diseases, Alcoholic/diagnosis , Liver Diseases, Alcoholic/metabolism , RNA, Ribosomal, 16S/genetics , Aged , ROC Curve , Feces/microbiology , Fatty Liver/microbiology , Fatty Liver/diagnosis , Fatty Liver/metabolism
4.
Artif Cells Nanomed Biotechnol ; 52(1): 278-290, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38733373

ABSTRACT

Type 2 diabetes mellitus (T2DM), nonalcoholic fatty liver disease (NAFLD), obesity (OB) and hypertension (HT) are categorized as metabolic disorders (MDs), which develop independently without distinct borders. Herein, we examined the gut microbiota (GM) and Saururus chinensis (SC) to confirm their therapeutic effects via integrated pharmacology. The overlapping targets from the four diseases were determined to be key protein coding genes. The protein-protein interaction (PPI) networks, and the SC, GM, signalling pathway, target and metabolite (SGSTM) networks were analysed via RPackage. Additionally, molecular docking tests (MDTs) and density functional theory (DFT) analysis were conducted to determine the affinity and stability of the conformer(s). TNF was the main target in the PPI analysis, and equol derived from Lactobacillus paracasei JS1 was the most effective agent for the formation of the TNF complex. The SC agonism (PPAR signalling pathway), and antagonism (neurotrophin signalling pathway) by SC were identified as agonistic bioactives (aromadendrane, stigmasta-5,22-dien-3-ol, 3,6,6-trimethyl-3,4,5,7,8,9-hexahydro-1H-2-benzoxepine, 4α-5α-epoxycholestane and kinic acid), and antagonistic bioactives (STK734327 and piclamilast), respectively, via MDT. Finally, STK734327-MAPK1 was the most favourable conformer according to DFT. Overall, the seven bioactives from SC and equol that can be produced by Lactobacillus paracasei JS1 can exert synergistic effects on these four diseases.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Hypertension , Non-alcoholic Fatty Liver Disease , Obesity , Saururaceae , Gastrointestinal Microbiome/drug effects , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Obesity/microbiology , Obesity/metabolism , Diabetes Mellitus, Type 2/microbiology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Hypertension/microbiology , Hypertension/metabolism , Hypertension/drug therapy , Animals , Saururaceae/chemistry , Saururaceae/metabolism , Molecular Docking Simulation , Humans , Protein Interaction Maps
6.
Nat Commun ; 15(1): 4244, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762605

ABSTRACT

Cysteine metabolism occurs across cellular compartments to support diverse biological functions and prevent the induction of ferroptosis. Though the disruption of cytosolic cysteine metabolism is implicated in this form of cell death, it is unknown whether the substantial cysteine metabolism resident within the mitochondria is similarly pertinent to ferroptosis. Here, we show that despite the rapid depletion of intracellular cysteine upon loss of extracellular cystine, cysteine-dependent synthesis of Fe-S clusters persists in the mitochondria of lung cancer cells. This promotes a retention of respiratory function and a maintenance of the mitochondrial redox state. Under these limiting conditions, we find that glutathione catabolism by CHAC1 supports the mitochondrial cysteine pool to sustain the function of the Fe-S proteins critical to oxidative metabolism. We find that disrupting Fe-S cluster synthesis under cysteine restriction protects against the induction of ferroptosis, suggesting that the preservation of mitochondrial function is antagonistic to survival under starved conditions. Overall, our findings implicate mitochondrial cysteine metabolism in the induction of ferroptosis and reveal a mechanism of mitochondrial resilience in response to nutrient stress.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cysteine , Ferroptosis , Glutathione , Lung Neoplasms , Mitochondria , Humans , Cysteine/metabolism , Mitochondria/metabolism , Glutathione/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Cell Line, Tumor , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Iron-Sulfur Proteins/metabolism , Oxidation-Reduction , Mice
7.
Artif Cells Nanomed Biotechnol ; 52(1): 250-260, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38687561

ABSTRACT

Despite many recent studies on non-alcoholic fatty liver disease (NAFLD) therapeutics, the optimal treatment has yet to be determined. In this unfinished project, we combined secondary metabolites (SMs) from the gut microbiota (GM) and Hordeum vulgare (HV) to investigate their combinatorial effects via network pharmacology (NP). Additionally, we analyzed GM or barley - signalling pathways - targets - metabolites (GBSTMs) in combinatorial perspectives (HV, and GM). A total of 31 key targets were analysed via a protein-protein interaction (PPI) network, and JUN was identified as the uppermost target in NAFLD. On a bubble plot, we revealed that apelin signalling pathway, which had the lowest enrichment factor antagonize NAFLD. Holistically, we scrutinized GBSTM to identify key components (GM, signalling pathways, targets, and metabolites) associated with the Apelin signalling pathway. Consequently, we found that the primary GMs (Eubacterium limosum, Eggerthella sp. SDG-2, Alistipes indistinctus YIT 12060, Odoribacter laneus YIT 12061, Paraprevotella clara YIT 11840, Paraprevotella xylaniphila YIT 11841) to ameliorate NAFLD. The molecular docking test (MDT) suggested that tryptanthrin-JUN is an agonist, conversely, dihydroglycitein-HDAC5, 1,3-diphenylpropan-2-ol-NOS1, and (10[(Acetyloxy)methyl]-9-anthryl)methyl acetate-NOS2, which are antagonistic conformers in the apelin signalling pathway. Overall, these results suggest that combination therapy could be an effective strategy for treating NAFLD.


Subject(s)
Gastrointestinal Microbiome , Hordeum , Non-alcoholic Fatty Liver Disease , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/metabolism , Hordeum/microbiology , Hordeum/metabolism , Gastrointestinal Microbiome/drug effects , Animals , Signal Transduction/drug effects , Mice , Protein Interaction Maps , Humans
9.
Clin Transl Sci ; 17(3): e13778, 2024 03.
Article in English | MEDLINE | ID: mdl-38515346

ABSTRACT

Persea americana fruit (PAF) is a favorable nutraceutical resource that comprises diverse unsaturated fatty acids (UFAs). UFAs are significant dietary supplementation, as they relieve metabolic disorders, including obesity (OB). In another aspect, this study was focused on the anti-OB efficacy of the non-fatty acids (NFAs) in PAF through network pharmacology (NP). Natural product activity & species source (NPASS), SwissADME, similarity ensemble approach (SEA), Swiss target prediction (STP), DisGeNET, and online Mendelian inheritance in man (OMIM) were utilized to gather significant molecules and its targets. The crucial targets were adopted to construct certain networks: protein-protein interaction (PPI), PAF-signaling pathways-targets-compounds (PSTC) networks, a bubble chart, molecular docking assay (MDA), and density function theory (DFT). Finally, the toxicities of the key compounds were validated by ADMETlab 2.0 platform. All 41 compounds in PAF conformed to Lipinski's rule, and the key 31 targets were identified between OB and PAF. On the bubble chart, PPAR signaling pathway had the highest rich factor, suggesting that the pathway might be an agonism for anti-OB. Conversely, estrogen signaling pathway had the lowest rich factor, indicating that the mechanism might be antagonism against OB. Likewise, the PSTC network represented that AKT1 had the greatest degree value. The MDA results showed that AKT1-gamma-tocopherol, PPARA-fucosterol, PPARD-stigmasterol, (PPARG)-fucosterol, (NR1H3)-campesterol, and ILK-alpha-tocopherol formed the most stable conformers. The DFT represented that the five molecules might be promising agents via multicomponent targeting. Overall, this study suggests that the NFAs in PAF might play important roles against OB.


Subject(s)
Fruit , Persea , Humans , Molecular Docking Simulation , Biological Assay , Fatty Acids , Obesity/drug therapy
10.
Article in English | MEDLINE | ID: mdl-38467925

ABSTRACT

Diarrhea, a common gastrointestinal symptom in health problems, is highly associated with gut dysbiosis. The purpose of this study is to demonstrate the effect of multistrain probiotics (Sensi-Biome) on diarrhea from the perspective of the microbiome-neuron axis. Sensi-Biome (Lactiplantibacillus plantarum, Bifidobacterium animalis subsp. lactis, Lactobacillus acidophilus, Streptococcus thermophilus, Bifidobacterium bifidum, and Lactococcus lactis) was administered in a 4% acetic acid-induced diarrhea rat model at concentrations of 1 × 108 (G1), 1 × 109 (G2), and 1 × 1010 CFU/0.5 mL (G3). Diarrhea-related parameters, inflammation-related cytokines, and stool microbiota analysis by 16S rRNA were evaluated. A targeted and untargeted metabolomics approach was used to analyze the cecum samples using liquid chromatography and orbitrap mass spectrometry. The stool moisture content (p < 0.001), intestinal movement rate (p < 0.05), and pH (p < 0.05) were significantly recovered in G3. Serotonin levels were decreased in the multistrain probiotics groups. The inflammatory cytokines, serotonin, and tryptophan hydroxylase expression were improved in the Sensi-Biome groups. At the phylum level, Sensi-Biome showed the highest relative abundance of Firmicutes. Short-chain fatty acids including butyrate, iso-butyrate, propionate, and iso-valeric acid were significantly modified in the Sensi-Biome groups. Equol and oleamide were significantly improved in the multistrain probiotics groups. In conclusion, Sensi-Biome effectively controls diarrhea by modulating metabolites and the serotonin pathway.

13.
Nat Commun ; 15(1): 1163, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331894

ABSTRACT

The role of the serine/glycine metabolic pathway (SGP) has recently been demonstrated in tumors; however, the pathological relevance of the SGP in thyroid cancer remains unexplored. Here, we perform metabolomic profiling of 17 tumor-normal pairs; bulk transcriptomics of 263 normal thyroid, 348 papillary, and 21 undifferentiated thyroid cancer samples; and single-cell transcriptomes from 15 cases, showing the impact of mitochondrial one-carbon metabolism in thyroid tumors. High expression of serine hydroxymethyltransferase-2 (SHMT2) and methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is associated with low thyroid differentiation scores and poor clinical features. A subpopulation of tumor cells with high mitochondrial one-carbon pathway activity is observed in the single-cell dataset. SHMT2 inhibition significantly compromises mitochondrial respiration and decreases cell proliferation and tumor size in vitro and in vivo. Collectively, our results highlight the importance of the mitochondrial one-carbon pathway in undifferentiated thyroid cancer and suggest that SHMT2 is a potent therapeutic target.


Subject(s)
Multiomics , Thyroid Neoplasms , Humans , Glycine Hydroxymethyltransferase/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Metabolic Networks and Pathways/genetics , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism
14.
Gut Microbes ; 16(1): 2307568, 2024.
Article in English | MEDLINE | ID: mdl-38299316

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease, and its prevalence has increased worldwide in recent years. Additionally, there is a close relationship between MASLD and gut microbiota-derived metabolites. However, the mechanisms of MASLD and its metabolites are still unclear. We demonstrated decreased indole-3-propionic acid (IPA) and indole-3-acetic acid (IAA) in the feces of patients with hepatic steatosis compared to healthy controls. Here, IPA and IAA administration ameliorated hepatic steatosis and inflammation in an animal model of WD-induced MASLD by suppressing the NF-κB signaling pathway through a reduction in endotoxin levels and inactivation of macrophages. Bifidobacterium bifidum metabolizes tryptophan to produce IAA, and B. bifidum effectively prevents hepatic steatosis and inflammation through the production of IAA. Our study demonstrates that IPA and IAA derived from the gut microbiota have novel preventive or therapeutic potential for MASLD treatment.


Subject(s)
Bifidobacterium bifidum , Fatty Liver , Gastrointestinal Microbiome , Metabolic Diseases , Animals , Humans , Lipid Metabolism , Indoles/pharmacology , Fatty Liver/drug therapy , Inflammation/drug therapy
15.
Hepatol Int ; 18(2): 486-499, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37000389

ABSTRACT

BACKGROUND AND AIM: The prevalence and severity of alcoholic liver disease (ALD) are increasing. The incidence of alcohol-related cirrhosis has risen up to 2.5%. This study aimed to identify novel metabolite mechanisms involved in the development of ALD in patients. The use of gut microbiome-derived metabolites is increasing in targeted therapies. Identifying metabolic compounds is challenging due to the complex patterns that have long-term effects on ALD. We investigated the specific metabolite signatures in ALD patients. METHODS: This study included 247 patients (heathy control, HC: n = 62, alcoholic fatty liver, AFL; n = 25, alcoholic hepatitis, AH; n = 80, and alcoholic cirrhosis, AC, n = 80) identified, and stool samples were collected. 16S rRNA sequencing and metabolomics were performed with MiSeq sequencer and liquid chromatography coupled to time-of-flight-mass spectrometry (LC-TOF-MS), respectively. The untargeted metabolites in AFL, AH, and AC samples were evaluated by multivariate statistical analysis and metabolic pathotypic expression. Metabolic network classifiers were used to predict the pathway expression of the AFL, AH, and AC stages. RESULTS: The relative abundance of Proteobacteria was increased and the abundance of Bacteroides was decreased in ALD samples (p = 0.001) compared with that in HC samples. Fusobacteria levels were higher in AH samples (p = 0.0001) than in HC samples. Untargeted metabolomics was applied to quantitatively screen 103 metabolites from each stool sample. Indole-3-propionic acid levels are significantly lower in AH and AC (vs. HC, p = 0.001). Indole-3-lactic acid (ILA: p = 0.04) levels were increased in AC samples. AC group showed an increase in indole-3-lactic acid (vs. HC, p = 0.040) level. Compared with that in HC samples, the levels of short-chain fatty acids (SCFAs: acetic acid, butyric acid, propionic acid, iso-butyric acid, and iso-valeric acid) and bile acids (lithocholic acids) were significantly decreased in AC. The pathways of linoleic acid metabolism, indole compounds, histidine metabolism, fatty acid degradation, and glutamate metabolism were closely associated with ALD metabolism. CONCLUSIONS: This study identified that microbial metabolic dysbiosis is associated with ALD-related metabolic dysfunction. The SCFAs, bile acids, and indole compounds were depleted during ALD progression. CLINICAL TRIAL: Clinicaltrials.gov, number NCT04339725.


Subject(s)
Gastrointestinal Microbiome , Liver Diseases, Alcoholic , Humans , Propionates , RNA, Ribosomal, 16S/genetics , Liver Cirrhosis, Alcoholic , Indoles , Bile Acids and Salts
16.
Clin Cancer Res ; 30(4): 883-894, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38088902

ABSTRACT

PURPOSE: Thyroid cancer metabolic characteristics vary depending on the molecular subtype determined by mutational status. We aimed to investigate the molecular subtype-specific metabolic characteristics of thyroid cancers. EXPERIMENTAL DESIGN: An integrative multi-omics analysis was conducted, incorporating transcriptomics, metabolomics, and proteomics data obtained from human tissues representing distinct molecular characteristics of thyroid cancers: BRAF-like (papillary thyroid cancer with BRAFV600E mutation; PTC-B), RAS-like (follicular thyroid cancer with RAS mutation; FTC-R), and ATC-like (anaplastic thyroid cancer with BRAFV600E or RAS mutation; ATC-B or ATC-R). To validate our findings, we employed tissue microarray of human thyroid cancer tissues and performed in vitro analyses of cancer cell phenotypes and metabolomic assays after inducing genetic knockdown. RESULTS: Metabolic properties differed between differentiated thyroid cancers of PTC-B and FTC-R, but were similar in dedifferentiated thyroid cancers of ATC-B/R, regardless of their mutational status. Tricarboxylic acid (TCA) intermediates and branched-chain amino acids (BCAA) were enriched with the activation of TCA cycle only in FTC-R, whereas one-carbon metabolism and pyrimidine metabolism increased in both PTC-B and FTC-R and to a great extent in ATC-B/R. However, the protein expression levels of the BCAA transporter (SLC7A5) and a key enzyme in one-carbon metabolism (SHMT2) increased in all thyroid cancers and were particularly high in ATC-B/R. Knockdown of SLC7A5 or SHMT2 inhibited the migration and proliferation of thyroid cancer cell lines differently, depending on the mutational status. CONCLUSIONS: These findings define the metabolic properties of each molecular subtype of thyroid cancers and identify metabolic vulnerabilities, providing a rationale for therapies targeting its altered metabolic pathways in advanced thyroid cancer.


Subject(s)
Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Large Neutral Amino Acid-Transporter 1/genetics , Multiomics , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Mutation , Phenotype , Carbon/metabolism , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism
17.
Langmuir ; 39(51): 18834-18845, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38091527

ABSTRACT

Hydrocarbon (HC)-based block copolymers have been recognized as promising candidates for proton exchange membranes (PEMs) due to their distinct hydrophilic-hydrophobic separation, which results in improved proton transport compared to that of random copolymers. However, most PEMs derived from HC-based ionomers, including block copolymers, encounter challenges related to durability in electrochemical cells due to their low mechanical and chemical properties. One method for reinforcing HC-based ionomers involves incorporating the ionomers into commercially available low surface tension PTFE porous substrates. Nevertheless, the high interfacial energy between the hydrocarbon-based ionomer solution and PTFE remains a challenge in this reinforcement process, which necessitates the application of surface energy treatment to PTFE. Here, multiblock sulfonated poly(arylene ether sulfone) (SPAES) ionomers are being reinforced using untreated PE on the surface, and this is compared to reinforcement using surface-treated porous PTFE. The PE support layer exhibits a lower surface energy barrier compared to the surface-treated PTFE layer for the infiltration of the multiblock SPAES solution. This is characterized by the absence of noticeable voids, high translucency, gas impermeability, and a physical and chemical stability. By utilizing a high surface tension PE support with a comparable value to the multiblock SPAES, effective reinforcement of the multiblock SPAES ionomers is achieved for a PEM, which is potentially applicable to various hydrogen energy-based electrochemical cells.

18.
Gut Microbes ; 15(2): 2281014, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37988132

ABSTRACT

The liver is rich in innate immune cells, such as natural killer (NK) cells, natural killer T cells, and Kupffer cells associated with the gut microbiome. These immune cells are dysfunctional owing to alcohol consumption. However, there is insufficient data on the association between immune cells and gut microbiome in alcoholic liver disease (ALD). Therefore, the purpose of this study was to evaluate the effects of probiotic strains on NK cells in ALD patients. In total, 125 human blood samples [control (n = 22), alcoholic hepatitis (n = 43), and alcoholic cirrhosis (n = 60]) were collected for flow cytometric analysis. C57BL/6J mice were divided into four groups (normal, EtOH-fed, and 2 EtOH+strain groups [Phocaeicola dorei and Lactobacillus helveticus]). Lymphocytes isolated from mouse livers were analyzed using flow cytometry. The frequency of NK cells increased in patients with alcoholic hepatitis and decreased in patients with alcoholic cirrhosis. The expression of NKp46, an NK cell-activating receptor, was decreased in patients with alcoholic hepatitis and increased in patients with alcoholic cirrhosis compared to that in the control group. The number of cytotoxic CD56dimCD16+ NK cells was significantly reduced in patients with alcoholic cirrhosis. We tested the effect of oral administration P. dorei and L. helveticus in EtOH-fed mice. P. dorei and L. helveticus improved liver inflammation and intestinal barrier damage caused by EtOH supply and increased NK cell activity. Therefore, these observations suggest that the gut microbiome may ameliorate ALD by regulating immune cells.


Subject(s)
Gastrointestinal Microbiome , Hepatitis, Alcoholic , Liver Diseases, Alcoholic , Humans , Animals , Mice , Mice, Inbred C57BL , Liver Cirrhosis, Alcoholic , Killer Cells, Natural , Ethanol
20.
Front Microbiol ; 14: 1174968, 2023.
Article in English | MEDLINE | ID: mdl-37333632

ABSTRACT

Constipation is one of the most common gastrointestinal (GI) disorders worldwide. The use of probiotics to improve constipation is well known. In this study, the effect on loperamide-induced constipation by intragastric administration of probiotics Consti-Biome mixed with SynBalance® SmilinGut (Lactobacillus plantarum PBS067, Lactobacillus rhamnosus LRH020, Bifidobacterium animalis subsp. lactis BL050; Roelmi HPC), L. plantarum UALp-05 (Chr. Hansen), Lactobacillus acidophilus DDS-1 (Chr. Hansen), and Streptococcus thermophilus CKDB027 (Chong Kun Dang Bio) to rats was evaluated. To induce constipation, 5 mg/kg loperamide was intraperitoneally administered twice a day for 7 days to all groups except the normal control group. After inducing constipation, Dulcolax-S tablets and multi-strain probiotics Consti-Biome were orally administered once a day for 14 days. The probiotics were administered 0.5 mL at concentrations of 2 × 108 CFU/mL (G1), 2 × 109 CFU/mL (G2), and 2 × 1010 CFU/mL (G3). Compared to the loperamide administration group (LOP), the multi-strain probiotics not only significantly increased the number of fecal pellets but also improved the GI transit rate. The mRNA expression levels of serotonin- and mucin-related genes in the colons that were treated with the probiotics were also significantly increased compared to levels in the LOP group. In addition, an increase in serotonin was observed in the colon. The cecum metabolites showed a different pattern between the probiotics-treated groups and the LOP group, and an increase in short-chain fatty acids was observed in the probiotic-treated groups. The abundances of the phylum Verrucomicrobia, the family Erysipelotrichaceae and the genus Akkermansia were increased in fecal samples of the probiotic-treated groups. Therefore, the multi-strain probiotics used in this experiment were thought to help alleviate LOP-induced constipation by altering the levels of short-chain fatty acids, serotonin, and mucin through improvement in the intestinal microflora.

SELECTION OF CITATIONS
SEARCH DETAIL