Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 191(1): 35-46, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36200899

ABSTRACT

We review how a data infrastructure for the Plant Cell Atlas might be built using existing infrastructure and platforms. The Human Cell Atlas has developed an extensive infrastructure for human and mouse single cell data, while the European Bioinformatics Institute has developed a Single Cell Expression Atlas, that currently houses several plant data sets. We discuss issues related to appropriate ontologies for describing a plant single cell experiment. We imagine how such an infrastructure will enable biologists and data scientists to glean new insights into plant biology in the coming decades, as long as such data are made accessible to the community in an open manner.


Subject(s)
Computational Biology , Plant Cells , Animals , Humans , Mice , Plants/genetics
2.
Nucleic Acids Res ; 50(D1): D439-D444, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34791371

ABSTRACT

The AlphaFold Protein Structure Database (AlphaFold DB, https://alphafold.ebi.ac.uk) is an openly accessible, extensive database of high-accuracy protein-structure predictions. Powered by AlphaFold v2.0 of DeepMind, it has enabled an unprecedented expansion of the structural coverage of the known protein-sequence space. AlphaFold DB provides programmatic access to and interactive visualization of predicted atomic coordinates, per-residue and pairwise model-confidence estimates and predicted aligned errors. The initial release of AlphaFold DB contains over 360,000 predicted structures across 21 model-organism proteomes, which will soon be expanded to cover most of the (over 100 million) representative sequences from the UniRef90 data set.


Subject(s)
Databases, Protein , Protein Folding , Proteins/chemistry , Software , Amino Acid Sequence , Animals , Bacteria/genetics , Bacteria/metabolism , Datasets as Topic , Dictyostelium/genetics , Dictyostelium/metabolism , Fungi/genetics , Fungi/metabolism , Humans , Internet , Models, Molecular , Plants/genetics , Plants/metabolism , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Proteins/genetics , Proteins/metabolism , Trypanosoma cruzi/genetics , Trypanosoma cruzi/metabolism
3.
Nucleic Acids Res ; 49(W1): W619-W623, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34048576

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic will be remembered as one of the defining events of the 21st century. The rapid global outbreak has had significant impacts on human society and is already responsible for millions of deaths. Understanding and tackling the impact of the virus has required a worldwide mobilisation and coordination of scientific research. The COVID-19 Data Portal (https://www.covid19dataportal.org/) was first released as part of the European COVID-19 Data Platform, on April 20th 2020 to facilitate rapid and open data sharing and analysis, to accelerate global SARS-CoV-2 and COVID-19 research. The COVID-19 Data Portal has fortnightly feature releases to continue to add new data types, search options, visualisations and improvements based on user feedback and research. The open datasets and intuitive suite of search, identification and download services, represent a truly FAIR (Findable, Accessible, Interoperable and Reusable) resource that enables researchers to easily identify and quickly obtain the key datasets needed for their COVID-19 research.


Subject(s)
Biomedical Research , COVID-19 , Databases, Factual , Datasets as Topic , Information Dissemination , Open Access Publishing , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/genetics , COVID-19/virology , Databases, Bibliographic , Disease Outbreaks , Humans , Pandemics , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/ultrastructure , Time Factors , Viral Proteins/chemistry , Viral Proteins/genetics
4.
Nucleic Acids Res ; 47(D1): D1073-D1079, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30535239

ABSTRACT

Patient-derived tumor xenograft (PDX) mouse models are a versatile oncology research platform for studying tumor biology and for testing chemotherapeutic approaches tailored to genomic characteristics of individual patients' tumors. PDX models are generated and distributed by a diverse group of academic labs, multi-institution consortia and contract research organizations. The distributed nature of PDX repositories and the use of different metadata standards for describing model characteristics presents a significant challenge to identifying PDX models relevant to specific cancer research questions. The Jackson Laboratory and EMBL-EBI are addressing these challenges by co-developing PDX Finder, a comprehensive open global catalog of PDX models and their associated datasets. Within PDX Finder, model attributes are harmonized and integrated using a previously developed community minimal information standard to support consistent searching across the originating resources. Links to repositories are provided from the PDX Finder search results to facilitate model acquisition and/or collaboration. The PDX Finder resource currently contains information for 1985 PDX models of diverse cancers including those from large resources such as the Patient-Derived Models Repository, PDXNet and EurOPDX. Individuals or organizations that generate and distribute PDXs are invited to increase the 'findability' of their models by participating in the PDX Finder initiative at www.pdxfinder.org.


Subject(s)
Computational Biology/methods , Databases, Factual , Neoplasms/genetics , Neoplasms/therapy , Xenograft Model Antitumor Assays , Animals , Gene Expression Regulation, Neoplastic , Genomics/methods , Humans , Information Storage and Retrieval/methods , Information Storage and Retrieval/statistics & numerical data , Internet , Metadata/statistics & numerical data , Mice
SELECTION OF CITATIONS
SEARCH DETAIL