Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters











Publication year range
1.
Proc Biol Sci ; 291(2016): 20231860, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38351804

ABSTRACT

Understanding mechanisms that promote the maintenance of biodiversity (genetic and species diversity) has been a central topic in evolution and ecology. Previous studies have revealed that diapause can contribute to coexistence of competing genotypes or species in fluctuating environments via the storage effect. However, they tended to focus on differences in reproductive success (e.g. seed yield) and diapause termination (e.g. germination) timing. Here we tested whether different photoperiodic responses in diapause induction can promote coexistence of two parthenogenetic (asexual) genotypes of Daphnia pulex in Lake Fukami-ike, Japan. Through laboratory experiments, we confirmed that short day length and low food availability induced the production of diapausing eggs. Furthermore, we found that one genotype tended to produce diapausing eggs in broader environmental conditions than the other. Terminating parthenogenetic reproduction earlier decreases total clonal production, but the early diapausing genotype becomes advantageous by assuring reproduction in 'short' years where winter arrival is earlier than usual. Empirically parameterized theoretical analyses suggested that different photoperiodic responses can promote coexistence via the storage effect with fluctuations of the growing season length. Therefore, timing of diapause induction may be as important as diapause termination timing for promoting the maintenance of genetic diversity in fluctuating environments.


Subject(s)
Daphnia pulex , Diapause , Animals , Circadian Rhythm/physiology , Photoperiod , Genetic Variation , Daphnia/genetics
2.
J Ethnobiol Ethnomed ; 17(1): 58, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34635130

ABSTRACT

BACKGROUND: Traditional resource management (TRM) systems develop depending on local conditions, such as climate, culture, and environment. Most studies have focused on the TRM system itself, excluding the people who manage the system, and the relationship between the system and the people. The use of resources and people is intimately linked through the practice of TRM systems on Gau Island and this relationship needs to be understood to advance sustainable resource use. METHODS: A survey was conducted on the use of medicinal plants on Gau Island, Fiji. Interviews were conducted from September 2013 to January 2015 with knowledgeable members of each community. The types of plants, prescriptions, and health problems were documented, and social and ecological factors affecting the sustainability of TRM of medicinal plants used in each of the 16 villages were statistically analysed by linear regression analysis. RESULTS: A total of 58 medicinal plants used on a daily basis to treat 27 health problems were identified on Gau. Two medicinal plants, Botebotekoro (Ageratum conyzoides) and Totodro (Centella asiatica), were used in all districts to treat various health problems. There were contrasts between the villages in the medical lore and prescriptions, and villages often used different traditional treatments than others for the same ailment; therefore, the status and knowledge of medicinal plants have developed distinctly in each village. Geographical and social factors have been suggested as possible reasons for the differences in regional resource utilisation among villages. Statistical analysis of the relationship between the state of TRM and social and ecological factors suggest that community solidarity has a positive impact on the sustainable practice of TRM. This study showed that traditional practices simultaneously contribute to the conservation of the natural environment and the binding of communities. CONCLUSIONS: The results highlight the importance of understanding how TRM systems can contribute to the conservation of the natural environment. Cultural activities are essential to raise community solidarity, which has led to the sustainable use of natural resources. This suggests that merely documenting the use of medicinal plants is not enough to ensure that the skills and knowledge are passed down to the next generation.


Subject(s)
Ethnobotany , Plants, Medicinal , Environment , Fiji , Humans , Knowledge , Medicine, Traditional
3.
Ecol Evol ; 11(3): 1240-1253, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33598127

ABSTRACT

An increase in nutrient levels due to eutrophication has considerable effects on lake ecosystems. Cladocerans are intermediate consumers in lake ecosystems; thus, they are influenced by both the bottom-up and top-down effects that occur as eutrophication progresses. The long-term community succession of cladocerans and the effects cladocerans experience through the various eutrophication stages have rarely been investigated from the perspective of the early-stage cladoceran community assemblage during lake formation. In our research, long-term cladoceran community succession was examined via paleolimnological analysis in the currently eutrophic Lake Fukami-ike, Japan. We measured the concentration of total phosphorus and phytoplankton pigments and counted cladoceran and other invertebrate subfossils in all layers of collected sediment cores, and then assessed changes in the factors controlling the cladoceran community over a 354-year period from lake formation to the present. The cladoceran community consisted only of benthic taxa at the time of lake formation. When rapid eutrophication occurred and phytoplankton increased, the benthic community was replaced by a pelagic community. After further eutrophication, large Daphnia and high-order consumers became established. The statistical analysis suggested that bottom-up effects mainly controlled the cladoceran community in the lake's early stages, and the importance of top-down effects increased after eutrophication occurred. Total phosphorus and phytoplankton pigments had positive effects on pelagic Bosmina, leading to the replacement of the benthic cladoceran community by the pelagic one. In contrast, the taxa established posteutrophication were affected more by predators than by nutrient levels. A decrease in planktivorous fish possibly allowed large Daphnia to establish, and the subsequent increase in planktivorous fish reduced the body size of the cladoceran community.

4.
Commun Biol ; 4(1): 49, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33420411

ABSTRACT

The biomass ratio of herbivores to primary producers reflects the structure of a community. Four primary factors have been proposed to affect this ratio, including production rate, defense traits and nutrient contents of producers, and predation by carnivores. However, identifying the joint effects of these factors across natural communities has been elusive, in part because of the lack of a framework for examining their effects simultaneously. Here, we develop a framework based on Lotka-Volterra equations for examining the effects of these factors on the biomass ratio. We then utilize it to test if these factors simultaneously affect the biomass ratio of freshwater plankton communities. We found that all four factors contributed significantly to the biomass ratio, with carnivore abundance having the greatest effect, followed by producer stoichiometric nutrient content. Thus, the present framework should be useful for examining the multiple factors shaping various types of communities, both aquatic and terrestrial.


Subject(s)
Biomass , Food Chain , Herbivory , Models, Biological , Animals , Cyprinidae , Fundulidae , Plankton
5.
Ecol Evol ; 9(23): 13585-13595, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31871668

ABSTRACT

Land-use changes, one of the greatest threats to global biodiversity, can cause underappreciated effects on ecosystems by altering the structures of interspecific interaction networks. These effects have typically been explored by evaluating interaction networks composed of a single type of interaction. Therefore, it remains unclear whether the different types of interaction networks sharing the same species respond to the same land-use changes in a similar manner.To compare the responses of herbivory and pollination networks to land-use changes, we investigated both types of interaction networks in seminatural grasslands categorized into three types of agricultural land-use (abandoned, extensively managed, and intensively managed) in a Japanese agricultural landscape. We quantified the structures of the interaction networks using several indices (connectance, evenness, diversity, generality, network specialization, and robustness) and compared them among different land-use types. We conducted piecewise SEM to differentiate the direct and indirect effects of land-use changes on the network structures.Although both land-use changes (abandonment and intensification) led to reduced plant and insect species richness, the structures of herbivory and pollination networks showed different responses to the land-use changes. There was a marked contrast in network generality; while, herbivore species were less generalized (i.e., having fewer host plant species) in fields with land-use intensification, pollinator species were less generalized in abandoned fields.Furthermore, the mechanisms behind the changes in interaction networks were also different between pollination and herbivory networks. The change in herbivory network generality was induced by the decrease in plant species richness, whereas the change in pollination network generality was mainly induced by the effect independent of changes in species richness and composition, which possibly reflect the less number of flowers in shaded environment.The present study demonstrates that agricultural land-use changes affect herbivory and pollination networks in contrasting ways and suggests the importance of assessing multiple types of interaction networks for biodiversity conservation in plant-insect systems. Our results also highlight the underappreciated importance of maintaining habitats with an intermediate intensity of land-use.

6.
Proc Biol Sci ; 285(1882)2018 07 04.
Article in English | MEDLINE | ID: mdl-30051833

ABSTRACT

Light is a fundamental driver of ecosystem dynamics, affecting the rate of photosynthesis and primary production. In spite of its importance, less is known about its community-scale effects on aquatic ecosystems compared with those of nutrient loading. Understanding light limitation is also important for ecosystem management, as human activities have been rapidly altering light availability to aquatic ecosystems. Here we show that decreasing light can paradoxically increase phytoplankton abundance in shallow lakes. Our results, based on field manipulation experiments, field observations and models, suggest that, under competition for light and nutrients between phytoplankton and submersed macrophytes, alternative stable states are possible under high-light supply. In a macrophyte-dominated state, as light decreases phytoplankton density increases, because macrophytes (which effectively compete for nutrients released from the sediment) are more severely affected by light reduction. Our results demonstrate how species interactions with spatial heterogeneity can cause an unexpected outcome in complex ecosystems. An implication of our findings is that partial surface shading for controlling harmful algal bloom may, counterintuitively, increase phytoplankton abundance by decreasing macrophytes. Therefore, to predict how shallow lake ecosystems respond to environmental perturbations, it is essential to consider effects of light on the interactions between pelagic and benthic producers.


Subject(s)
Light , Phytoplankton/growth & development , Biomass , Chara/growth & development , Chara/radiation effects , Ecosystem , Models, Theoretical , Photosynthesis , Phytoplankton/radiation effects , Population Density , Population Dynamics
7.
Nat Ecol Evol ; 1(2): 24, 2017 Jan 24.
Article in English | MEDLINE | ID: mdl-28812622

ABSTRACT

Understanding how ecological and evolutionary processes interdependently structure biosphere dynamics is a major challenge in the era of worldwide ecosystem degradation. However, our knowledge of 'eco-evolutionary feedbacks' depends largely on findings from simple systems representing limited spatial scales and involving few species. Here we review recent conceptual developments for the understanding of multispecies coevolutionary processes and then discuss how new lines of concepts and methods will accelerate the integration of ecology and evolutionary biology. To build a research workflow for integrating insights into spatiotemporal dynamics of species-rich systems, we focus on the roles of 'metacommunity hub' species, whose population size and/or genetic dynamics potentially control landscape- or regional-scale phenomena. As large amounts of network data are becoming available with high-throughput sequencing of various host-symbiont, prey-predator, and symbiont-symbiont interactions, we suggest it is now possible to develop bases for the integrated understanding and management of species-rich ecosystems.

9.
J Theor Biol ; 419: 201-210, 2017 04 21.
Article in English | MEDLINE | ID: mdl-28212786

ABSTRACT

Filament formation is a common bacterial defense mechanism and possibly has a broad impact on microbial community dynamics. In order to examine the impact of filament formation on population dynamics, we developed an experimental system with a filamentous bacterium Flectobacillus sp. MWH38 and a ciliate predator Tetrahymena pyriformis. In this system, the effective defense of Flectobacillus resulted in the extinction of Tetrahymena by allowing almost no population growth. The result of a kairomone experiment suggested the existence of chemical signals for filament formation. To examine the mechanism further, we developed a quantitative mechanistic model and optimized the model for the experimental result using the simulated annealing method. We also performed a global parameter sensitivity analysis using an approximated Bayesian computation based on the sequential Monte Carlo method to reveal parameters to which the model behavior is sensitive to. Our model reproduced the population dynamics, as well as the cell size dynamics of Flectobacillus. The model behavior is sensitive to the nutrient uptake of Flectobacillus and the propensity of filament formation. It robustly predicts the extinction of Tetrahymena at the condition used in the experiment and predicts the transition from equilibrium to population cycle at higher nutrient conditions. Contrary to the previous study that disproved the presence of chemical signals for filament formation, our result suggested the importance of chemical signals at low predator density, suggesting the variety in bacterial resistance mechanisms that act at different stages of predator-prey interactions.


Subject(s)
Algorithms , Cytophagaceae/physiology , Ecosystem , Models, Biological , Tetrahymena/physiology , Animals , Bayes Theorem , Computer Simulation , Microbial Interactions , Monte Carlo Method , Population Dynamics , Population Growth
10.
J Theor Biol ; 370: 103-15, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25644757

ABSTRACT

Studies of catastrophic regime shifts have mostly considered a simple equilibrium situation, in which there are two stable equilibria divided by an unstable equilibrium. However, populations and communities in nature often show more complex dynamics, and regime shifts in the complex dynamic systems have attracted limited attention so far. Understanding the division between alternative stable states in multispecies communities requires an extended perspective and the conventional analysis of a simple equilibrium situation cannot be applied as it is. What divides the alternative stable states can take complex structure rather than a point, and this division of alternative states is usually impossible to be obtained by analytical approaches. In this study, we developed a numerical method that can relatively easily provide the structure of the division of alternative stable states. We then applied the method to different three-species systems exhibiting oscillatory dynamics to understand their recoverability from perturbations that can bring out irreversible state change. Our results suggested that there is temporal variation of the recoverability that may not be understood straightforwardly because of the complex structure of the division of alternative stable states. Also, which of the alternative states is more vulnerable to perturbations and easier to show a regime shift can vary depending on the size of perturbation. These attributes of regime shifts have not been found in a simple equilibrium situation, suggesting the need of a dynamic aspect of the recoverability of ecological systems.


Subject(s)
Ecosystem , Population Dynamics , Animals , Computer Simulation , Models, Biological , Predatory Behavior , Time Factors
11.
Proc Natl Acad Sci U S A ; 111(45): 16035-40, 2014 Nov 11.
Article in English | MEDLINE | ID: mdl-25336757

ABSTRACT

Evolution on a time scale similar to ecological dynamics has been increasingly recognized for the last three decades. Selection mediated by ecological interactions can change heritable phenotypic variation (i.e., evolution), and evolution of traits, in turn, can affect ecological interactions. Hence, ecological and evolutionary dynamics can be tightly linked and important to predict future dynamics, but our understanding of eco-evolutionary dynamics is still in its infancy and there is a significant gap between theoretical predictions and empirical tests. Empirical studies have demonstrated that the presence of genetic variation can dramatically change ecological dynamics, whereas theoretical studies predict that eco-evolutionary dynamics depend on the details of the genetic variation, such as the form of a tradeoff among genotypes, which can be more important than the presence or absence of the genetic variation. Using a predator-prey (rotifer-algal) experimental system in laboratory microcosms, we studied how different forms of a tradeoff between prey defense and growth affect eco-evolutionary dynamics. Our experimental results show for the first time to our knowledge that different forms of the tradeoff produce remarkably divergent eco-evolutionary dynamics, including near fixation, near extinction, and coexistence of algal genotypes, with quantitatively different population dynamics. A mathematical model, parameterized from completely independent experiments, explains the observed dynamics. The results suggest that knowing the details of heritable trait variation and covariation within a population is essential for understanding how evolution and ecology will interact and what form of eco-evolutionary dynamics will result.


Subject(s)
Biological Evolution , Models, Biological , Plants , Rotifera/physiology , Animals , Food Chain , Genetic Variation/physiology , Quantitative Trait, Heritable
12.
Ecology ; 95(8): 2303-15, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25230480

ABSTRACT

Theory of invasion ecology indicates that the number of invading individuals (propagule size) and the timing of invasion are important for invasion success. Propagule size affects establishment success due to an Allee effect and the effect of demographic stochasticity, whereas the timing of invasion does so via niche opportunity produced by fluctuating predation pressure and resource abundance. We propose a synthesis of these two mechanisms by a time-varying dose-response curve where the dose is propagule size and the response is establishment probability. We show an example of the synthesis in a simple predator-prey model where successful invasion occurs as a demographic regime shift because of the bistability of the system. The two mechanisms are not independent, but simultaneously determine invasion success in our model. We found that positive growth rate of an invading species does not ensure its establishment, especially when its propagule size is small or when its growth rate is in a decreasing trend. We suggest the difficulty of understanding invasion process based on a dose-response curve of propagule size as no unique curve can be determined due to the effects of invasion timing (i.e., the threshold of demographic regime shift is time varied). The results of our model analysis also have an implication on the phase relationship between population cycles of predators and prey.


Subject(s)
Biological Evolution , Food Chain , Models, Biological , Animals , Genetic Variation , Population Dynamics , Time Factors
13.
Microbes Environ ; 28(3): 285-94, 2013.
Article in English | MEDLINE | ID: mdl-23995424

ABSTRACT

In the past couple of decades, molecular ecological techniques have been developed to elucidate microbial diversity and distribution in microbial ecosystems. Currently, modern techniques, represented by meta-omics and single cell observations, are revealing the incredible complexity of microbial ecosystems and the large degree of phenotypic variation. These studies propound that microbiological techniques are insufficient to untangle the complex microbial network. This minireview introduces the application of advanced mathematical approaches in combination with microbiological experiments to microbial ecological studies. These combinational approaches have successfully elucidated novel microbial behaviors that had not been recognized previously. Furthermore, the theoretical perspective also provides an understanding of the plasticity, robustness and stability of complex microbial ecosystems in nature.


Subject(s)
Bacteria/chemistry , Bacterial Physiological Phenomena , Ecosystem , Bacteria/isolation & purification , Mathematical Computing , Microbiological Techniques
14.
J Theor Biol ; 300: 81-90, 2012 May 07.
Article in English | MEDLINE | ID: mdl-22266124

ABSTRACT

The metacommunity perspective has attracted much attention recently, but the understanding of how dispersal between local communities alters their ecological dynamics is still limited, especially regarding the effect of non-random, unequal dispersal of organisms. This is a study of a three-trophic-level (predator-prey-resource) system that is connected by different manners of dispersal. The model is based on a well-studied experimental system cultured in chemostats (continuous flow-through culture), which consists of rotifer predator, algal prey and nutrient. In the model, nutrient dispersal can give rise to multistability when the two systems are connected by nutrient dispersal, whereas three-trophic-level systems tend to show a rich dynamical behavior, e.g. antisynchronous or asynchronous oscillations including chaos. Although the existence of multistability was already known in two-trophic-level (predator-prey) systems, it was confined to a small range of dispersal rate. In contrast, the multistability in the three-trophic-level system is found in a broader range of dispersal rate. The results suggest that, in three-trophic-level systems, the dispersal of nutrient not only alters population dynamics of local systems but can also cause regime shifts such as a transition to different oscillation phases.


Subject(s)
Food Chain , Models, Biological , Predatory Behavior , Animals , Biological Clocks , Nonlinear Dynamics , Population Dynamics , Systems Theory
15.
Am Nat ; 178(3): 287-304, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21828987

ABSTRACT

Ecologists have increasingly focused on how rapid adaptive trait changes can affect population dynamics. Rapid adaptation can result from either rapid evolution or phenotypic plasticity, but their effects on population dynamics are seldom compared directly. Here we examine theoretically the effects of rapid evolution and phenotypic plasticity of antipredatory defense on predator-prey dynamics. Our analyses reveal that phenotypic plasticity tends to stabilize population dynamics more strongly than rapid evolution. It is therefore important to know the mechanism by which phenotypic variation is generated for predicting the dynamics of rapidly adapting populations. We next examine an advantage of a phenotypically plastic prey genotype over the polymorphism of specialist prey genotypes. Numerical analyses reveal that the plastic genotype, if there is a small cost for maintaining it, cannot coexist with the pairs of specialist counterparts unless the system has a limit cycle. Furthermore, for the plastic genotype to replace specialist genotypes, a forced environmental fluctuation is critical in a broad parameter range. When these results are combined, the plastic genotype enjoys an advantage with population oscillations, but plasticity tends to lose its advantage by stabilizing the oscillations. This dilemma leads to an interesting intermittent limit cycle with the changing frequency of phenotypic plasticity.


Subject(s)
Biological Evolution , Models, Biological , Phenotype , Predatory Behavior , Scenedesmus/genetics , Adaptation, Biological , Animals , Environment , Genotype , Microbial Interactions , Polymorphism, Genetic , Population Dynamics , Rotifera
16.
Philos Trans R Soc Lond B Biol Sci ; 364(1523): 1579-91, 2009 Jun 12.
Article in English | MEDLINE | ID: mdl-19414472

ABSTRACT

Character evolution that affects ecological community interactions often occurs contemporaneously with temporal changes in population size, potentially altering the very nature of those dynamics. Such eco-evolutionary processes may be most readily explored in systems with short generations and simple genetics. Asexual and cyclically parthenogenetic organisms such as microalgae, cladocerans and rotifers, which frequently dominate freshwater plankton communities, meet these requirements. Multiple clonal lines can coexist within each species over extended periods, until either fixation occurs or a sexual phase reshuffles the genetic material. When clones differ in traits affecting interspecific interactions, within-species clonal dynamics can have major effects on the population dynamics. We first consider a simple predator-prey system with two prey genotypes, parametrized with data from a well-studied experimental system, and explore how the extent of differences in defence against predation within the prey population determine dynamic stability versus instability of the system. We then explore how increased potential for evolution affects the community dynamics in a more general community model with multiple predator and multiple prey genotypes. These examples illustrate how microevolutionary 'details' that enhance or limit the potential for heritable phenotypic change can have significant effects on contemporaneous community-level dynamics and the persistence and coexistence of species.


Subject(s)
Biological Evolution , Food Chain , Genetics, Population , Models, Biological , Parthenogenesis/genetics , Phenotype , Animals , Chlorella vulgaris/genetics , Chlorella vulgaris/growth & development , Genetic Variation , Genotype , Population Dynamics , Rotifera/genetics , Rotifera/growth & development
17.
PLoS Biol ; 5(9): e235, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17803356

ABSTRACT

Trophic relationships, such as those between predator and prey or between pathogen and host, are key interactions linking species in ecological food webs. The structure of these links and their strengths have major consequences for the dynamics and stability of food webs. The existence and strength of particular trophic links has often been assessed using observational data on changes in species abundance through time. Here we show that very strong links can be completely missed by these kinds of analyses when changes in population abundance are accompanied by contemporaneous rapid evolution in the prey or host species. Experimental observations, in rotifer-alga and phage-bacteria chemostats, show that the predator or pathogen can exhibit large-amplitude cycles while the abundance of the prey or host remains essentially constant. We know that the species are tightly linked in these experimental microcosms, but without this knowledge, we would infer from observed patterns in abundance that the species are weakly or not at all linked. Mathematical modeling shows that this kind of cryptic dynamics occurs when there is rapid prey or host evolution for traits conferring defense against attack, and the cost of defense (in terms of tradeoffs with other fitness components) is low. Several predictions of the theory that we developed to explain the rotifer-alga experiments are confirmed in the phage-bacteria experiments, where bacterial evolution could be tracked. Modeling suggests that rapid evolution may also confound experimental approaches to measuring interaction strength, but it identifies certain experimental designs as being more robust against potential confounding by rapid evolution.


Subject(s)
Biological Evolution , Food Chain , Models, Genetic , Population Dynamics , Animals , Bacteria , Bacteriophages , Ecosystem , Eukaryota , Rotifera
18.
Proc Natl Acad Sci U S A ; 103(28): 10690-5, 2006 Jul 11.
Article in English | MEDLINE | ID: mdl-16807296

ABSTRACT

Using rotifer-algal microcosms, we tracked rapid evolution resulting from temporally changing natural selection in ecological predator-prey dynamics. We previously demonstrated that predator-prey oscillations in rotifer-algal laboratory microcosms are qualitatively altered by the presence of genetic variation within the prey. In that study, changes in algal gene frequencies were inferred from their effects on population dynamics but not observed directly. Here, we document rapid prey evolution in this system by directly observing changes in Chlorella vulgaris genotype frequencies as the abundances of these algae and their consumer, Brachionus calyciflorus, change through time. We isolated a group of algal clones that we could distinguish by using microsatellite-DNA markers, and developed an allele-specific quantitative PCR technique (AsQ-PCR) to quantify the frequencies of pairs of clones in mixed culture. We showed that two of these genotypes exhibited a fitness tradeoff in which one was more resistant to predation (more digestion-resistant), and the other had faster population growth under limiting nitrogen concentrations. A fully specified mathematical model for the rotifer-algal population and evolutionary dynamics predicted that these two clones would undergo a single oscillation in clonal frequencies followed by asymptotic fixation of the more resistant clone, rather than the recurrent oscillations previously observed with other algal clones. We used AsQ-PCR to confirm this prediction: the superior competitor dominated initially, but as rotifer densities increased, the more predator-resistant clone predominated.


Subject(s)
Alleles , Biological Evolution , Chlorella vulgaris/growth & development , Chlorella vulgaris/genetics , Polymerase Chain Reaction , Predatory Behavior , Rotifera , Animals , Clone Cells , Genetics, Population , Polymerase Chain Reaction/methods
19.
Ecol Lett ; 9(7): 774-9, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16796566

ABSTRACT

Inadequate supply of one or more mineral elements can slow the growth of animal consumers and alter their physiology, life history and behaviour. A key concept for understanding nutrient deficiency in animals is the threshold elemental ratio (TER), at which growth limitation switches from one element to another. We used a stoichiometric model that coupled animal bioenergetics and body elemental composition to estimate TER of carbon and phosphorus (TER(C:P)) for 41 aquatic consumer taxa. We found a wide range in TER(C:P) (77-3086, ratio by atoms), which was generated by interspecific differences in body C : P ratios and gross growth efficiencies of C. TER(C:P) also varied among aquatic invertebrates having different feeding strategies, such that detritivores had significantly higher threshold ratios than grazers and predators. The higher TER(C:P) in detritivores resulted not only from lower gross growth efficiencies of carbon but also reflected lower body P content in these consumers. Supporting previous stoichiometric theory, we found TER(C:P) to be negatively correlated with the maximum growth rate of invertebrate consumers. By coupling bioenergetics and stoichiometry, this analysis revealed strong linkages among the physiology, ecology and evolution of nutritional demands for animal growth.


Subject(s)
Carbon/metabolism , Energy Metabolism , Invertebrates/chemistry , Invertebrates/physiology , Phosphorus/metabolism , Animals , Biological Evolution , Classification , Diet , Ecology , Ecosystem , Food Chain , Nutritional Status , Water
20.
Nature ; 439(7072): E1-2; discussion E2, 2006 Jan 05.
Article in English | MEDLINE | ID: mdl-16397458

ABSTRACT

A variety of mechanisms can theoretically produce competitive coexistence in nature, making it hard to identify a single explanation for the maintenance of diversity in any particular system. Based on laboratory experiments with a consumer-resource system of crustacean Daphnia eating algae, Nelson et al. suggest that maintenance of genetic diversity in the consumer populations they studied depends only on the dynamics of the population structure of the consumer. We suggest that the differences in Daphnia genetic diversity that they find for different experimental treatments could equally be explained by a simple, well known mechanism: the number of coexisting competitors cannot exceed the number of shared resources. Here we confirm this possibility by using a simple mathematical model and suggest that more than one mechanism may account for the maintenance of genetic diversity observed by Nelson et al. in their system.


Subject(s)
Daphnia/genetics , Daphnia/physiology , Eukaryota/physiology , Food Chain , Genetic Variation , Aging , Animals , Competitive Behavior/physiology , Ecology , Eukaryota/classification , Genotype , Models, Biological , Population Dynamics , Reproducibility of Results , Selection, Genetic , Zooplankton/genetics , Zooplankton/physiology
SELECTION OF CITATIONS
SEARCH DETAIL