Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Immunol Med ; : 1-9, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38539091

ABSTRACT

B cells that produce anti-aquaporin-4 (AQP4) antibodies play a crucial role in neuromyelitis optica spectrum disorder (NMOSD) pathogenesis. We previously reported that naïve B (NB) cells from patients with NMOSD, unlike those from healthy controls, exhibit transcriptional changes suggesting the adoption of an antibody-secreting cell (ASCs) phenotype. CD25+ NB cells, whose numbers are increased in NMOSD patients, have a greater capacity to differentiate into ASCs than do CD25- NB cells. Here, we attempted to establish novel B cell subset cell lines from patients with NMOSD to enable molecular analysis of their abnormalities. We generated Epstein-Barr virus-immortalized lymphoblastoid cell lines (LCLs) from CD25+ NB, CD25- NB, and switched memory B (SMB) cells. All LCLs largely maintained the features of the original cell type in terms of cell surface marker expression and could differentiate into ASCs. Notably, CD25+ NB-LCLs derived from patients with NMOSD exhibited a greater capacity to differentiate into SMB-LCLs than did CD25- NB-LCLs derived from patients with NMOSD, suggesting that the established LCLs maintained the characteristics of cells isolated from patients. The LCLs established in this study are likely to be useful for elucidating the mechanism by which cells that produce anti-AQP4 antibodies develop in NMOSD.

2.
Nat Commun ; 15(1): 1666, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38396021

ABSTRACT

Both monocytes and macrophages are heterogeneous populations. It was traditionally understood that Ly6Chi classical (inflammatory) monocytes differentiate into pro-inflammatory Ly6Chi macrophages. Accumulating evidence has suggested that Ly6Chi classical monocytes can also differentiate into Ly6Clo pro-resolving macrophages under certain conditions, while their differentiation trajectory remains to be fully elucidated. The present study with scRNA-seq and flow cytometric analyses reveals that Ly6ChiPD-L2lo classical monocytes recruited to the allergic skin lesion sequentially differentiate into Ly6CloPD-L2hi pro-resolving macrophages, via intermediate Ly6ChiPD-L2hi macrophages but not Ly6Clo non-classical monocytes, in an IL-4 receptor-dependent manner. Along the differentiation, classical monocyte-derived macrophages display anti-inflammatory signatures followed by metabolic rewiring concordant with their ability to phagocytose apoptotic neutrophils and allergens, therefore contributing to the resolution of inflammation. The failure in the generation of these pro-resolving macrophages drives the IL-1α-mediated cycle of inflammation with abscess-like accumulation of necrotic neutrophils. Thus, we clarify the stepwise differentiation trajectory from Ly6Chi classical monocytes toward Ly6Clo pro-resolving macrophages that restrain neutrophilic aggravation of skin allergic inflammation.


Subject(s)
Dermatitis, Atopic , Monocytes , Mice , Animals , Monocytes/metabolism , Macrophages/metabolism , Inflammation/pathology , Gene Expression Profiling , Dermatitis, Atopic/metabolism , Mice, Inbred C57BL
3.
J Physiol Sci ; 73(1): 24, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37828465

ABSTRACT

Mast cells are present in mucosal and connective tissues throughout the body. They synthesize and release a wide variety of bioactive molecules, such as histamine, proteases, and cytokines. In this study, we found that a population of connective tissue mast cells (CTMCs) stores and releases noradrenaline, originating from sympathetic nerves. Noradrenaline-storing cells, not neuronal fibers, were predominantly identified in the connective tissues of the skin, mammary gland, gastrointestinal tract, bronchus, thymus, and pancreas in wild-type mice but were absent in mast cell-deficient W-sash c-kit mutant KitW-sh/W-sh mice. In vitro studies using bone marrow-derived mast cells revealed that extracellular noradrenaline was taken up but not synthesized. Upon ionomycin stimulation, noradrenaline was released. Electron microscopy analyses further suggested that noradrenaline is stored in and released from the secretory granules of mast cells. Finally, we found that noradrenaline-storing CTMCs express organic cation transporter 3 (Oct3), which is also known as an extraneuronal monoamine transporter, SLC22A3. Our findings indicate that mast cells may play a role in regulating noradrenaline concentration by storing and releasing it in somatic tissues.


Subject(s)
Mast Cells , Proto-Oncogene Proteins c-kit , Mice , Animals , Mast Cells/physiology , Norepinephrine , Connective Tissue , Skin
5.
Sci Rep ; 13(1): 9394, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37296298

ABSTRACT

Multiple sclerosis (MS) is an inflammatory demyelinating disease characterized by multiple lesions in the central nervous system. Although the role of B cells in MS pathogenesis has attracted much attention, but the detailed mechanisms remain unclear. To investigate the effects of B cells on demyelination, we analyzed a cuprizone-induced demyelination model, and found that demyelination was significantly exacerbated in B cell-deficient mice. We next investigated whether immunoglobulin affected the myelin formation process using organotypic brain slice cultures and revealed that remyelination was improved in immunoglobulin-treated groups compared with the control group. Analysis of oligodendrocyte-precursor cell (OPC) monocultures showed that immunoglobulins directly affected on OPCs and promoted their differentiation and myelination. Furthermore, OPCs expressed FcγRI and FcγRIII, two receptors that were revealed to mediate the effects of IgG. To the best of our knowledge, this is the first study to demonstrate that B cells act in an inhibitory manner against cuprizone-induced demyelination, while immunoglobulins enhance remyelination following demyelination. Analysis of the culture system revealed that immunoglobulins directly act on OPCs to promote their differentiation and myelination. Future studies to elucidate the effects of immunoglobulins on OPCs in vivo and the detailed mechanisms of these effects may lead to new treatments for demyelinating diseases.


Subject(s)
Multiple Sclerosis , Remyelination , Mice , Animals , Oligodendroglia/pathology , Cuprizone/pharmacology , Cell Differentiation , Immunoglobulins/pharmacology , Multiple Sclerosis/pathology , Mice, Inbred C57BL , Myelin Sheath/physiology , Disease Models, Animal
6.
Gut ; 71(3): 487-496, 2022 03.
Article in English | MEDLINE | ID: mdl-33963042

ABSTRACT

OBJECTIVE: Although immunoglobulin A (IgA) is abundantly expressed in the gut and known to be an important component of mucosal barriers against luminal pathogens, its precise function remains unclear. Therefore, we tried to elucidate the effect of IgA on gut homeostasis maintenance and its mechanism. DESIGN: We generated various IgA mutant mouse lines using the CRISPR/Cas9 genome editing system. Then, we evaluated the effect on the small intestinal homeostasis, pathology, intestinal microbiota, cytokine production, and immune cell activation using intravital imaging. RESULTS: We obtained two lines, with one that contained a <50 base pair deletion in the cytoplasmic region of the IgA allele (IgA tail-mutant; IgAtm/tm) and the other that lacked the most constant region of the IgH α chain, which resulted in the deficiency of IgA production (IgA-/-). IgA-/- exhibited spontaneous inflammation in the ileum but not the other parts of the gastrointestinal tract. Associated with this, there were significantly increased lamina propria CD4+ T cells, elevated productions of IFN-γ and IL-17, increased ileal segmented filamentous bacteria and skewed intestinal microflora composition. Intravital imaging using Ca2+ biosensor showed that IgA-/- had elevated Ca2+ signalling in Peyer's patch B cells. On the other hand, IgAtm/tm seemed to be normal, suggesting that the IgA cytoplasmic tail is dispensable for the prevention of the intestinal disorder. CONCLUSION: IgA plays an important role in the mucosal homeostasis associated with the regulation of intestinal microbiota and protection against mucosal inflammation especially in the ileum.


Subject(s)
Ileitis/etiology , Ileum/pathology , Immunoglobulin A/physiology , Animals , B-Lymphocytes/physiology , Cytokines/metabolism , Disease Models, Animal , Female , Gastrointestinal Microbiome , Homeostasis , Ileitis/metabolism , Ileitis/pathology , Ileum/metabolism , Ileum/ultrastructure , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Intravital Microscopy , Male , Mice , Mice, Mutant Strains , T-Lymphocytes/physiology
7.
Int Immunol ; 33(12): 809-813, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34038539

ABSTRACT

Basophils, the rarest granulocytes, were identified by Paul Ehrlich more than 140 years ago, much earlier than the discovery of T and B cells. Unfortunately, basophils were often mixed up with tissue-resident mast cells because of some phenotypic similarities between them and considered erroneously as minor relatives or blood-circulating precursors of mast cells. Moreover, basophil research was hindered by the rarity of basophils and the paucity of useful analytical tools, and therefore basophils had often been neglected in immunological studies. A series of studies using newly developed tools, including basophil-depleting antibodies and genetically engineered mice deficient only in basophils, have clearly defined previously unrecognized roles of basophils, that are distinct from those played by tissue-resident mast cells. In this mini-review, we highlight recent advances in our understanding of basophil functions, particularly focusing on their roles in the regulation of innate and acquired immunity, allergic reactions, autoimmunity and protective immunity against parasitic infections, mainly based on animal studies. Further studies on human basophils would facilitate the development of new strategies for the treatment of basophil-associated disorders.


Subject(s)
Basophils/immunology , Animals , Humans
8.
Biochem Biophys Res Commun ; 557: 199-205, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33872989

ABSTRACT

Malignant peripheral nerve sheath tumor (MPNST), a highly malignant tumor that arises in peripheral nerve tissues, is known to be highly resistant to radiation and chemotherapy. Although there are several reports on genetic mutations and epigenetic changes that define the pathogenesis of MPNST, there is insufficient information regarding the microenvironment that contributes to the malignancy of MPNST. In the present study, we demonstrate that adrenaline increases the cancer stem cell population in MPNST. This effect is mediated by adrenaline stimulation of beta-2 adrenergic receptor (ADRB2), which activates the Hippo transducer, YAP/TAZ. Inhibition and RNAi experiments revealed that inhibition of ADRB2 attenuated the adrenaline-triggered activity of YAP/TAZ and subsequently attenuated MPNST cells stemness. Furthermore, ADRB2-YAP/TAZ axis was confirmed in the MPNST patients' specimens. The prognosis of patients with high levels of ADRB2 was found to be significantly worse. These data show that adrenaline exacerbates MPNST prognosis and may aid the development of new treatment strategies for MPNST.


Subject(s)
Epinephrine/pharmacology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Nerve Sheath Neoplasms/metabolism , Receptors, Adrenergic, beta-2/metabolism , Signal Transduction/drug effects , Adaptor Proteins, Signal Transducing/metabolism , Cell Line, Tumor , Humans , Nerve Sheath Neoplasms/genetics , Nerve Sheath Neoplasms/pathology , Prognosis , RNA Interference , Receptors, Adrenergic, beta-2/genetics , Signal Transduction/genetics , Transcription Factors/metabolism , YAP-Signaling Proteins
9.
Parasite Immunol ; 43(5): e12804, 2021 05.
Article in English | MEDLINE | ID: mdl-33124059

ABSTRACT

Ticks are blood-feeding ectoparasites that transmit a variety of pathogens to host animals and humans, causing severe infectious diseases such as Lyme disease. In a certain combination of animal and tick species, tick infestation elicits acquired immunity against ticks in the host, which can reduce the ability of ticks to feed on blood and to transmit pathogens in the following tick infestations. Therefore, our understanding of the cellular and molecular mechanisms of acquired tick resistance (ATR) can advance the development of anti-tick vaccines to prevent tick infestation and tick-borne diseases. Basophils are a minor population of white blood cells circulating in the bloodstream and are rarely observed in peripheral tissues under steady-state conditions. Basophils have been reported to accumulate at tick-feeding sites during re-infestation in cattle, rabbits, guinea pigs and mice. Selective ablation of basophils resulted in a loss of ATR in guinea pigs and mice, illuminating the essential role of basophils in the manifestation of ATR. In this review, we discuss the recent advance in the elucidation of the cellular and molecular mechanisms underlying basophil recruitment to the tick-feeding site and basophil-mediated ATR.


Subject(s)
Basophils/physiology , Tick Infestations/immunology , Ticks/immunology , Adaptive Immunity , Animals , Cattle , Goats , Guinea Pigs , Histamine/immunology , Histamine/metabolism , Humans , Immunoglobulin E/metabolism , Leukocyte Count , Mice , Rabbits , Tick Infestations/prevention & control
10.
Clin Auton Res ; 31(2): 165-178, 2021 04.
Article in English | MEDLINE | ID: mdl-32926324

ABSTRACT

PURPOSE: The autonomic nervous system, consisting of sympathetic and parasympathetic/vagal nerves, is known to control the functions of any organ, maintaining whole-body homeostasis under physiological conditions. Recently, there has been increasing evidence linking sympathetic and parasympathetic/vagal nerves to cancers. The present review aimed to summarize recent developments from studies addressing the relationship between sympathetic and parasympathetic/vagal nerves and cancer behavior. METHODS: Literature review. RESULTS: Human and animal studies have revealed that sympathetic and parasympathetic/vagal nerves innervate the cancer microenvironment and alter cancer behavior. The sympathetic nerves have cancer-promoting effects on prostate cancer, breast cancer, and melanoma. On the other hand, while the parasympathetic/vagal nerves have cancer-promoting effects on prostate, gastric, and colorectal cancers, they have cancer-suppressing effects on breast and pancreatic cancers. These neural effects may be mediated by ß-adrenergic or muscarinic receptors and can be explained by changes in cancer cell behavior, angiogenesis, tumor-associated macrophages, and adaptive antitumor immunity. CONCLUSIONS: Sympathetic nerves innervating the tumor microenvironment promote cancer progression and are related to stress-induced cancer behavior. The parasympathetic/vagal nerves have variable (promoting or suppressing) effects on different cancer types. Approaches directed toward the sympathetic and parasympathetic/vagal nerves can be developed as a new cancer therapy. In addition to existing pharmacological, surgical, and electrical approaches, a recently developed virus vector-based genetic local neuroengineering technology is a powerful approach that selectively manipulates specific types of nerve fibers innervating the cancer microenvironment and leads to the suppression of cancer progression. This technology will enable the creation of "cancer neural therapy" individually tailored to different cancer types.


Subject(s)
Neoplasms , Parasympathetic Nervous System , Animals , Autonomic Nervous System , Humans , Male , Neoplasms/therapy , Sympathetic Nervous System , Tumor Microenvironment , Vagus Nerve
11.
Allergy ; 76(6): 1693-1706, 2021 06.
Article in English | MEDLINE | ID: mdl-33205439

ABSTRACT

Basophils are the rarest granulocytes which represent <1% of peripheral blood leukocytes. Basophils bear several phenotypic similarities to tissue-resident mast cells and therefore had been erroneously considered as blood-circulating mast cells. However, recent researches have revealed that basophils play nonredundant roles in allergic inflammation, protective immunity against parasitic infections and regulation of innate and acquired immunity. Basophils are recruited to inflamed tissues and activated in an IgE-dependent or IgE-independent manner to release a variety of effector molecules. Such molecules, including IL-4, act on various types of cells and play versatile roles, including the induction and termination of allergic inflammation and the regulation of immune responses. Recent development of novel therapeutic agents has enabled us to gain further insights into basophil biology in human disorders. In this review, we highlight the recent advances in the field of basophil biology with a particular focus on the role of basophils in allergic inflammation. Further studies on basophils and their effector molecules will help us identify novel therapeutic targets for treating allergic disorders.


Subject(s)
Hypersensitivity , Parasitic Diseases , Basophils , Humans , Inflammation , Mast Cells
12.
Front Immunol ; 11: 601504, 2020.
Article in English | MEDLINE | ID: mdl-33154758

ABSTRACT

Ticks are blood-sucking arthropods of great importance in the medical and veterinary fields worldwide. They are considered second only to mosquitos as vectors of pathogenic microorganisms that can cause serious infectious disorders, such as Lyme borreliosis and tick-borne encephalitis. Hard (Ixodid) ticks feed on host animals for several days and inject saliva together with pathogens to hosts during blood feeding. Some animal species can acquire resistance to blood-feeding by ticks after a single or repeated tick infestation, resulting in decreased weights and numbers of engorged ticks or the death of ticks in subsequent infestations. Importantly, this acquired tick resistance (ATR) can reduce the risk of pathogen transmission from pathogen-infected ticks to hosts. This is the basis for the development of tick antigen-targeted vaccines to forestall tick infestation and tick-borne diseases. Accumulation of basophils is detected in the tick re-infested skin lesion of animals showing ATR, and the ablation of basophils abolishes ATR in mice and guinea pigs, illustrating the critical role for basophils in the expression of ATR. In this review article, we provide a comprehensive overview of recent advances in our understanding of the cellular and molecular mechanisms responsible for the development and manifestation of ATR, with a particular focus on the role of basophils.


Subject(s)
Basophils/immunology , Immunologic Memory , Insect Bites and Stings/immunology , Saliva/immunology , Skin/immunology , Tick-Borne Diseases/prevention & control , Ticks/immunology , Animals , Basophils/microbiology , Basophils/parasitology , Basophils/virology , Histamine/immunology , Histamine Release , Host-Pathogen Interactions , Humans , Immunoglobulin E/immunology , Insect Bites and Stings/microbiology , Insect Bites and Stings/parasitology , Insect Bites and Stings/virology , Saliva/microbiology , Saliva/parasitology , Saliva/virology , Skin/microbiology , Skin/parasitology , Skin/virology , Tick-Borne Diseases/etiology , Tick-Borne Diseases/immunology , Tick-Borne Diseases/transmission , Ticks/microbiology , Ticks/parasitology , Ticks/virology , Vaccination , Vaccines/therapeutic use
13.
Biosci Microbiota Food Health ; 39(4): 209-218, 2020.
Article in English | MEDLINE | ID: mdl-33117619

ABSTRACT

Mechanosensory systems have been implicated in the maintenance of gut homeostasis, but details on the related mechanisms are scarce. Recently, we generated a conditional Ca2+ biosensor yellow cameleon 3.60 (YC3.60)-expressing transgenic mouse model and established a five-dimensional (5D; x, y, z, time, and Ca2+) intravital imaging system for investigating lymphoid tissues and enteric epithelial cell responses. To validate this gut-sensing system, we visualized responses of enteric nervous system (ENS) cells in Nestin-Cre/YC3.60flox mice with specific YC3.60 expression. The ENS, including the myenteric (Auerbach's) and submucous (Meissner's) plexuses, could be visualized without staining in this mouse line, indicating that the probe produced sufficient fluorescent intensity. Furthermore, the myenteric plexus exhibited Ca2+ signaling during peristalsis without stimulation. Nerve endings on the surface of enteric epithelia also exhibited Ca2+ signaling without stimulation. Mechanical stress induced transient salient Ca2+ flux in the myenteric plexus and in enteric epithelial cells in the Nestin-Cre/YC3.60 and the CAG-Cre/YC3.60 lines, respectively. Furthermore, the potential TRPM7 inhibitors were shown to attenuate mechanical stress-mediated Ca2+ signaling. These data indicate that the present intravital imaging system can be used to visualize mechanosensory Ca2+ signaling in ENS cells and enteric epithelial cells.

14.
Allergy ; 75(10): 2613-2622, 2020 10.
Article in English | MEDLINE | ID: mdl-32406065

ABSTRACT

BACKGROUND: Patients with atopic dermatitis (AD) often show the infiltration of basophils in the affected skin. Because basophils represent only a minor fraction among cellular infiltrates in the skin lesion, the functional significance of skin-infiltrating basophils in AD pathogenesis remains ill-defined. In this study, we aimed to clarify the role of basophils and their effector molecules triggering skin inflammation in oxazolone (OX)-induced murine model of AD. METHODS: A panel of mouse strains were sensitized and repeatedly challenged with topical applications of OX to induce AD-like skin inflammation. Both local and systemic Th2 immune responses were analyzed. RESULTS: Basophils progressively accumulated in the skin lesion but barely in draining lymph nodes (LNs). When basophils were depleted during the elicitation phase, skin inflammation was ameliorated while Th2 cell differentiation in draining LNs remained intact. The expression of IL-4 was highly upregulated in the affected skin, and basophils turned out to be the major producers of IL-4 among cellular infiltrates, suggesting the involvement of basophil-derived IL-4 in the Th2 skin inflammation. Indeed, basophil-specific IL-4-deficient mice displayed attenuated skin inflammation with a marked reduction of IL-4 in the skin lesion, even though cutaneous basophil infiltration and serum levels of IgE remained intact. CONCLUSIONS: Skin-infiltrating basophils promoted OX-induced AD-like skin inflammation through their local production of IL-4, rather than the induction of Th2 cell differentiation in draining LNs. This study suggests that the selective targeting of basophils could be a beneficial strategy in the treatment of a certain type of AD.


Subject(s)
Basophils , Dermatitis, Atopic , Interleukin-4 , Animals , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Interleukin-4/biosynthesis , Mice , Skin/pathology , Th2 Cells
15.
Biochem Biophys Res Commun ; 524(2): 340-345, 2020 04 02.
Article in English | MEDLINE | ID: mdl-31996305

ABSTRACT

The brain-gut axis which is an interaction between recognition and emotion and the gut sensory system for food and microbiota is important for health. However, there is no real-time monitoring system of the brain and the gut simultaneously so far. We attempted to establish a dual real-time monitoring system for the brain-gut axis by a combination of intravital Ca2+ imaging of the gut and electroencephalogram. Using a conditional Yellow Cameleon 3.60 expression mouse line, we performed intravital imaging of the gut, electrophysiological recordings of the vagus nerve, and electroencephalogram recordings of the various cortical regions simultaneously upon capsaicin stimuli as a positive control. Upon capsaicin administration into the small intestinal lumen, a simultaneous response of Ca2+ signal in the enteric nervous system and cortical local field potentials (LFPs) was successfully observed. Both of them responded immediately upon capsaicin stimuli. Capsaicin triggered a significant increase in the frequency of vagus nerve spikes and a significant decrease in the slow-wave power of cortical LFPs. Furthermore, capsaicin induced delayed and sustained Ca2+ signal in intestinal epithelial cells and then suppressed intestinal motility. The dual real-time monitoring system of the brain and the gut enables to dissect the interaction between the brain and the gut over time with precision.


Subject(s)
Brain/physiology , Enteric Nervous System/physiology , Gastrointestinal Tract/physiology , Vagus Nerve/physiology , Animals , Brain/drug effects , Calcium Signaling/drug effects , Capsaicin/pharmacology , Cell Line , Cells, Cultured , Electrophysiological Phenomena , Enteric Nervous System/drug effects , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/innervation , Male , Mice , Mice, Inbred C57BL , Monitoring, Physiologic , Sensory System Agents/pharmacology , Vagus Nerve/drug effects
16.
Int Immunol ; 32(3): 213-219, 2020 03 07.
Article in English | MEDLINE | ID: mdl-31793637

ABSTRACT

Mast cells (MCs) play a critical role in oral allergen-induced anaphylaxis. However, the contribution of basophils to the anaphylaxis remains unclear. The inhibitory immunoreceptor Allergin-1 is highly expressed on MCs and basophils and inhibits FcεRI-mediated signaling in MCs. Here, we show that Allergin-1-deficient (Milr1-/-) mice developed more severe hypothermia, a higher mortality rate and a greater incidence of diarrhea than did wild-type (WT) mice in an oral ovalbumin (OVA)-induced food allergy model. MC-deficient Mas-TRECK mice, which had been reconstituted with either WT or Milr1-/- bone marrow-derived cultured MCs, did not develop hypothermia in this food allergy model. On the other hand, depletion of basophils by injection of anti-CD200R3 antibody rescued Milr1-/- mice from lethal hypothermia but not from diarrhea. In vitro analyses demonstrated that Allergin-1 inhibits IgE-dependent activation of both human and mouse basophils. Thus, Allergin-1 on basophils selectively suppresses oral allergen-induced anaphylaxis.


Subject(s)
Anaphylaxis/immunology , Basophils/immunology , Receptors, Immunologic/immunology , Animals , Disease Models, Animal , Female , Food Hypersensitivity/immunology , Immunoglobulin E/immunology , Mice , Mice, Inbred BALB C , Mice, Knockout , Receptors, Immunologic/administration & dosage , Receptors, Immunologic/deficiency
17.
Biosci Microbiota Food Health ; 38(4): 141-149, 2019.
Article in English | MEDLINE | ID: mdl-31763117

ABSTRACT

Propolis possesses several immunological functions. We recently generated a conditional Ca2+ biosensor yellow cameleon (YC3.60) transgenic mouse line and established a five-dimensional (5D) (x, y, z, time, and Ca2+ signaling) system for intravital imaging of lymphoid tissues, including Peyer's patches (PPs). To assess the effects of propolis on immune cells, we analyzed Ca2+ signaling in vitro and in vivo using CD11c-Cre/YC3.60flox transgenic mice, in which CD11c+ dendritic cells (DCs) specifically express YC3.60. We found that propolis induced Ca2+ signaling in DCs in the PPs. Intravital imaging of PPs also showed that an intraperitoneal injection of propolis augmented Ca2+ signaling in CD11c+ cells, suggesting that propolis possesses immune-stimulating activity. Furthermore, CD11c+ cells in PPs in mice administrated propolis indicated an increase in Ca2+ signaling. Our results indicate that propolis induces immunogenicity under physiological conditions.

18.
Sci Signal ; 12(576)2019 04 09.
Article in English | MEDLINE | ID: mdl-30967512

ABSTRACT

Basophils have nonredundant roles in various immune responses that require Ca2+ influx. Here, we examined the role of two Ca2+ sensors, stromal interaction molecule 1 and 2 (STIM1 and STIM2), in basophil activation. We found that loss of STIM1, but not STIM2, impaired basophil IL-4 production after stimulation with immunoglobulin E (IgE)-containing immune complexes. In contrast, when basophils were stimulated with IL-3, loss of STIM2, but not STIM1, reduced basophil IL-4 production. This difference in STIM proteins was associated with distinct time courses of Ca2+ influx and transcription of the Il4 gene that were elicited by each stimulus. Similarly, basophil-specific STIM1 expression was required for IgE-driven chronic allergic inflammation in vivo, whereas STIM2 was required for IL-4 production after combined IL-3 and IL-33 treatment in mice. These data indicate that STIM1 and STIM2 have differential roles in the production of IL-4, which are stimulus dependent. Furthermore, these results illustrate the vital role of STIM2 in basophils, which is often considered to be less important than STIM1.


Subject(s)
Basophils/immunology , Calcium Signaling/immunology , Interleukin-3/immunology , Interleukin-4/immunology , Stromal Interaction Molecule 1/immunology , Stromal Interaction Molecule 2/immunology , Animals , Basophils/cytology , Calcium Signaling/genetics , Immunoglobulin E/immunology , Interleukin-3/genetics , Interleukin-4/genetics , Mice , Mice, Knockout , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 2/genetics
19.
Int Immunol ; 31(1): 41-49, 2019 02 06.
Article in English | MEDLINE | ID: mdl-30239735

ABSTRACT

A hapten is a small molecule that is not immunogenic on its own but can stimulate the production of antibodies at the sensitization phase when conjugated to carrier proteins. The hapten then reacts specifically with the antibodies generated against it to elicit an immune or allergic response at the challenge phase. Here, we compared various carrier proteins conjugated with the same hapten in their ability to induce hapten-specific IgE-mediated allergic responses in vitro and in vivo, and characterized the nature of carrier proteins that determines the magnitude of response at the challenge phase of allergic reactions. Hapten 2,4,6-trinitrophenol (TNP)-conjugated ovalbumin (TNP-OVA) and bovine serum albumin (TNP-BSA) elicited TNP-specific, mast cell-dependent, immediate-type allergic reactions at a comparable level in mice that had been passively sensitized with TNP-specific IgE. In contrast, TNP-OVA but not TNP-BSA efficiently induced a basophil-dependent, IgE-mediated chronic allergic inflammation (IgE-CAI), even though both proteins could stimulate basophils in vitro at a comparable level. By comparing different carrier proteins and structurally modifying them, we found that the formation of large aggregates is crucial for TNP-conjugated carrier proteins to efficiently elicit IgE-CAI, regardless of the type of protein. Thus, the aggregation status of carrier proteins appears to determine the magnitude of allergic response at the challenge phase of hapten-specific IgE-CAI. Our findings suggest that the allergenicity of substances is a matter of importance not only at the sensitization but also at the challenge phase in a certain type of allergy including a basophil-mediated allergic inflammation.


Subject(s)
Allergens/immunology , Basophils/immunology , Hypersensitivity/immunology , Protein Aggregates/immunology , Protein Aggregation, Pathological/immunology , Proteins/immunology , Allergens/chemistry , Animals , Basophils/metabolism , Disease Models, Animal , Haptens , Hypersensitivity/diagnosis , Hypersensitivity/metabolism , Immunoglobulin E/immunology , Macrophages/immunology , Macrophages/metabolism , Mast Cells/immunology , Mast Cells/metabolism , Mice , Molecular Weight , Proteins/chemistry , Proteins/metabolism , Skin/immunology , Skin/metabolism , Skin/pathology
20.
Proc Natl Acad Sci U S A ; 115(51): 13057-13062, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30510003

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality worldwide. It has generally been considered a non-Th2-type lung disorder, characterized by progressive airflow limitation with inflammation and emphysema, but its cellular and molecular mechanism remains ill defined, compared with that of asthma characterized by reversible airway obstruction. Here we show a previously unappreciated role for basophils at the initiation phase of emphysema formation in an elastase-induced murine model of COPD in that basophils represent less than 1% of lung-infiltrating cells. Intranasal elastase instillation elicited the recruitment of monocytes to the lung, followed by differentiation into interstitial macrophages (IMs) but rarely alveolar macrophages (AMs). Matrix metalloproteinase-12 (MMP-12) contributing to emphysema formation was highly expressed by IMs rather than AMs, in contrast to the prevailing assumption. Experiments using a series of genetically engineered mice suggested that basophil-derived IL-4, a Th2 cytokine, acted on lung-infiltrating monocytes to promote their differentiation into MMP-12-producing IMs that resulted in the destruction of alveolar walls and led to emphysema development. Indeed, mice deficient for IL-4 only in basophils failed to generate pathogenic MMP-12-producing IMs and hence develop emphysema. Thus, the basophil-derived IL-4/monocyte-derived IM/MMP-12 axis plays a crucial role in emphysema formation and therefore may be a potential target to slow down emphysema progression at the initiation phase of COPD.


Subject(s)
Basophils/pathology , Interleukin-4/metabolism , Macrophages, Alveolar/pathology , Macrophages/pathology , Matrix Metalloproteinase 12/physiology , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Emphysema/etiology , Animals , Basophils/metabolism , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Female , Macrophages/metabolism , Macrophages, Alveolar/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neutrophils , Pulmonary Emphysema/metabolism , Pulmonary Emphysema/pathology
SELECTION OF CITATIONS
SEARCH DETAIL