Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 305
Filter
1.
Protein Sci ; 33(9): e5144, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39150221

ABSTRACT

MpaG' is an S-adenosyl-L-methionine (SAM)-dependent methyltransferase involved in the compartmentalized biosynthesis of mycophenolic acid (MPA), a first-line immunosuppressive drug for organ transplantations and autoimmune diseases. MpaG' catalyzes the 5-O-methylation of three precursors in MPA biosynthesis including demethylmycophenolic acid (DMMPA), 4-farnesyl-3,5-dihydroxy-6-methylphthalide (FDHMP), and an intermediate containing three fewer carbon atoms compared to FDHMP (FDHMP-3C) with different catalytic efficiencies. Here, we report the crystal structures of S-adenosyl-L-homocysteine (SAH)/DMMPA-bound MpaG', SAH/FDHMP-3C-bound MpaG', and SAH/FDHMP-bound MpaG' to understand the catalytic mechanism of MpaG' and structural basis for its substrate flexibility. Structural and biochemical analyses reveal that MpaG' utilizes the catalytic dyad H306-E362 to deprotonate the C5 hydroxyl group of the substrates for the following methylation. The three substrates with differently modified farnesyl moieties are well accommodated in a large semi-open substrate binding pocket with the orientation of their phthalide moiety almost identical. Based on the structure-directed mutagenesis, a single mutant MpaG'Q267A is engineered with significantly improved catalytic efficiency for all three substrates. This study expands the mechanistic understanding and the pocket engineering strategy for O-methyltransferases involved in fungal natural product biosynthesis. Our research also highlights the potential of O-methyltransferases to modify diverse substrates by protein design and engineering.


Subject(s)
Methyltransferases , Mycophenolic Acid , Mycophenolic Acid/chemistry , Mycophenolic Acid/metabolism , Methyltransferases/chemistry , Methyltransferases/metabolism , Methyltransferases/genetics , Substrate Specificity , Crystallography, X-Ray , Models, Molecular , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Fungal Proteins/genetics , Catalytic Domain
2.
ACS Nano ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39072481

ABSTRACT

It is crucial to clarify how the iron nanostructure activates plant growth, particularly in combination with arbuscular mycorrhizal fungi (AMF). We first identified 1.0 g·kg-1 of nanoscale zerovalent iron (nZVI) as appropriate dosage to maximize maize growth by 12.7-19.7% in non-AMF and 18.9-26.4% in AMF, respectively. Yet, excessive nZVI at 2.0 g·kg-1 exerted inhibitory effects while FeSO4 showed slight effects (p > 0.05). Under an appropriate dose, a nano core-shell structure was formed and the transfer and diffusion of electrons between PS II and PS I were facilitated, significantly promoting the reduction of ferricyanide and NADP (p < 0.05). SEM images showed that excessive nZVI particles can form stacked layers on the surface of roots and hyphae, inhibiting water and nutrient uptake. TEM observations showed that excessive nanoparticles can penetrate into root cortical cells, disrupt cellular homeostasis, and substantially elevate Fe content in roots (p < 0.05). This exacerbated membrane lipid peroxidation and osmotic regulation, accordingly restricting photosynthetic capacity and AMF colonization. Yet, appropriate nZVI can be adhered to a mycelium surface, forming a uniform nanofilm structure. The strength of the mycelium network was evidently enhanced, under an increased root colonization rate and an extramatrical hyphal length (p < 0.05). Enhanced mycorrhizal infection was tightly associated with higher gas exchange and Rubisco and Rubisco enzyme activities. This enabled more photosynthetic carbon to input into AMF symbiont. There existed a positive feedback loop connecting downward transfer of photosynthate and upward transport of water/nutrients. FeSO4 only slightly affected mycorrhizal development. Thus, it was the Fe nanostructure but not its inorganic salt state that primed AMF symbionts for better growth.

3.
Sci Total Environ ; 944: 173975, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38876345

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) establish symbiotic relationships with roots of most plants, contributing to plant water uptake and soil carbon (C) sequestration. However, the interactive contribution and of long-term field AMF inoculation and water conservation on maize yield and soil organic carbon (SOC) sequestration in drylands remain largely unknown. After 7-year long-term field inoculation with AMF Funneliformis mosseae, AMF suppression by fungicide benomyl, and no-AMF/no-benomyl control, and two water conservation practices of half-film and full-film mulching (∼50 % and ∼100 crop planted area covered with plastic film), this study thus applied in situ 13CO2-C labeling and high-throughput sequencing to quantify newly photosynthetically assimilated C into different soil C pools including soil aggregates and respiration, and their effects on maize growth and productivity. Results showed that 7-year long-term AMF inoculation significantly increased the relative abundance of F. mosseae in rhizosphere soil and root AMF colonization, indicating that F. mosseae successfully dominated in AMF communities. Compared to no-AMF/no-benomyl control, AMF colonization significantly increased shoot biomass and maize yield by 17.9 % and 20.3 % while mitigated the less water conservation effects of half-film mulching on maize performance. The SOC content under field AMF inoculation SOC was increased from 7.9 to 8.4 g kg-1 and also the mean weight diameter of aggregates (1.21 to 1.35), e.g. aggregate stability. After 1 and/or 40 days 13C labeling, the enhanced 13C translocations into macro-aggregates with decreased 13C emissions from microbial decomposition under field AMF inoculation had contributed to SOC conservation in bulk soil. These results suggest that AMF inoculation in dryland crops is promising to increase crop yield while promoting more atmospheric CO2 fixation in soil aggregates. A long-term field AMF inoculation will enhance our understanding of applying beneficial mycorrhizal fungi to enhance soil C sequestration and also crop yield via plant-fixed atmospheric CO2 in semi-arid and arid farmlands.


Subject(s)
Carbon , Mycorrhizae , Soil , Zea mays , Zea mays/microbiology , Mycorrhizae/physiology , Soil/chemistry , Carbon/metabolism , Soil Microbiology , Glomeromycota/physiology , Carbon Isotopes , Carbon Sequestration , Plant Roots/microbiology
4.
Plant Physiol Biochem ; 213: 108839, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38879986

ABSTRACT

Physio-biochemical regulations governing crop growth period are pivotal for drought adaptation. Yet, the extent to which functionality of arbuscular mycorrhizal fungi (AM fungi) varies across different stages of maize growth under drought conditions remains uncertain. Therefore, periodic functionality of two different AM fungi i.e., Rhizophagus irregularis SUN16 and Glomus monosporum WUM11 were assessed at jointing, silking, and pre-harvest stages of maize subjected to different soil moisture gradients i.e., well-watered (80% SMC (soil moisture contents)), moderate drought (60% SMC), and severe drought (40% SMC). The study found that AM fungi significantly (p < 0.05) affected various morpho-physiological and biochemical parameters at different growth stages of maize under drought. As the plants matured, AM fungi enhanced root colonization, glomalin contents, and microbial biomass, leading to increased nutrient uptake and antioxidant activity. This boosted AM fungal activity ultimately improved photosynthetic efficiency, evident in increased photosynthetic pigments and photosynthesis. Notably, R. irregularis and G. monosporum improved water use efficiency and mycorrhizal dependency at critical growth stages like silking and pre-harvest, indicating their potential for drought resilience to stabilize yield. The principal component analysis highlighted distinct plant responses to drought across growth stages and AM fungi, emphasizing the importance of early-stage sensitivity. These findings underscore the potential of incorporating AM fungi into agricultural management practices to enhance physiological and biochemical responses, ultimately improving drought tolerance and yield in dryland maize cultivation.


Subject(s)
Droughts , Mycorrhizae , Zea mays , Zea mays/microbiology , Zea mays/growth & development , Zea mays/metabolism , Mycorrhizae/physiology , Photosynthesis , Plant Roots/microbiology , Plant Roots/growth & development , Glomeromycota/physiology , Glomeromycota/growth & development , Water/metabolism , Biomass , Fungi
5.
BMC Plant Biol ; 24(1): 492, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831289

ABSTRACT

Non-hydraulic root source signaling (nHRS) is a unique positive response to soil drying in the regulation of plant growth and development. However, it is unclear how the nHRS mediates the tradeoff between source and sink at the late growth stages and its adaptive mechanisms in primitive wheat. To address this issue, a root-splitting design was made by inserting solid partition in the middle of the pot culture to induce the occurrence of nHRS using four wheat cultivars (MO1 and MO4, diploid; DM22 and DM31, tetraploid) as materials. Three water treatments were designed as 1) both halves watered (CK), 2) holistic root system watered then droughted (FS), 3) one-half of the root system watered and half droughted (PS). FS and PS were designed to compare the role of the full root system and split root system to induce nHRS. Leaves samples were collected during booting and anthesis to compare the role of nHRS at both growth stages. The data indicated that under PS treatment, ABA concentration was significantly higher than FS and CK, demonstrating the induction of nHRS in split root design and nHRS decreased cytokinin (ZR) levels, particularly in the PS treatment. Soluble sugar and proline accumulation were higher in the anthesis stage as compared to the booting stage. POD activity was higher at anthesis, while CAT was higher at the booting stage. Increased ABA (nHRS) correlated with source-sink relationships and metabolic rate (i.e., leaf) connecting other stress signals. Biomass density showed superior resource acquisition and utilization capabilities in both FS and PS treatment as compared to CK in all plants. Our findings indicate that nHRS-induced alterations in phytohormones and their effect on source-sink relations were allied with the growth stages in primitive wheat.


Subject(s)
Diploidy , Plant Roots , Signal Transduction , Tetraploidy , Triticum , Triticum/genetics , Triticum/growth & development , Triticum/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/genetics , Plant Shoots/growth & development , Plant Shoots/metabolism , Plant Shoots/genetics , Plant Growth Regulators/metabolism , Abscisic Acid/metabolism , Cytokinins/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/genetics
6.
Nat Prod Res ; : 1-7, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752778

ABSTRACT

The fungus Penicillium egyptacum has been reported as a producer of the 16-membered macrolide antibiotic A26771B. In this study, two new berkeleylactone analogues, berkeleylactones S-T (1-2), were isolated from P. egyptiacum. Their structures were determined by the analyses of 1D- and 2D-NMR data, HRESIMS, and chemical derivatization. 1 is the first example of berkeleylactone analogue possessing a glucose moiety, whose absolute configuration was elucidated by acid hydrolysis followed by derivatization and LC-MS analysis. No antibacterial activity against Bacillus subtilis and Streptococcus salivarius was found within the range of 0-100 µM for compounds 1-2.

7.
Environ Int ; 186: 108632, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38583296

ABSTRACT

Plastic fragments are widely found in the soil profile of terrestrial ecosystems, forming plastic footprint and posing increasing threat to soil functionality and carbon (C) footprint. It is unclear how plastic footprint affects C cycling, and in particularly permanent C sequestration. Integrated field observations (including 13C labelling) were made using polyethylene and polylactic acid plastic fragments (low-, medium- and high-concentrations as intensifying footprint) landfilling in soil, to track C flow along soil-plant-atmosphere continuum (SPAC). The result indicated that increased plastic fragments substantially reduced photosynthetic C assimilation (p < 0.05), regardless of fragment degradability. Besides reducing C sink strength, relative intensity of C emission increased significantly, displaying elevated C source. Moreover, root C fixation declined significantly from 21.95 to 19.2 mg m-2, and simultaneously root length density, root weight density, specific root length and root diameter and surface area were clearly reduced. Similar trends were observed in the two types of plastic fragments (p > 0.05). Particularly, soil aggregate stability was significantly lowered as affected by plastic fragments, which accelerated the decomposition rate of newly sequestered C (p < 0.05). More importantly, net C rhizodeposition declined averagely from 39.77 to 29.41 mg m-2, which directly led to significant decline of permanent C sequestration in soil. Therefore, increasing plastic footprint considerably worsened C footprint regardless of polythene and biodegradable fragments. The findings unveiled the serious effects of plastic residues on permanent C sequestration across SPAC, implying that current C assessment methods clearly overlook plastic footprint and their global impact effects.


Subject(s)
Carbon Footprint , Plastics , Soil , Soil/chemistry , Carbon/analysis , Atmosphere/chemistry , Carbon Cycle , Ecosystem , Plants , Carbon Sequestration , Environmental Monitoring/methods
8.
Acta Pharmacol Sin ; 45(7): 1492-1505, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38538718

ABSTRACT

Immunosuppression by the tumor microenvironment is a pivotal factor contributing to tumor progression and immunotherapy resistance. Priming the tumor immune microenvironment (TIME) has emerged as a promising strategy for improving the efficacy of cancer immunotherapy. In this study we investigated the effects of noninvasive radiofrequency radiation (RFR) exposure on tumor progression and TIME phenotype, as well as the antitumor potential of PD-1 blockage in a model of pulmonary metastatic melanoma (PMM). Mouse model of PMM was established by tail vein injection of B16F10 cells. From day 3 after injection, the mice were exposed to RFR at an average specific absorption rate of 9.7 W/kg for 1 h per day for 14 days. After RFR exposure, lung tissues were harvested and RNAs were extracted for transcriptome sequencing; PMM-infiltrating immune cells were isolated for single-cell RNA-seq analysis. We showed that RFR exposure significantly impeded PMM progression accompanied by remodeled TIME of PMM via altering the proportion and transcription profile of tumor-infiltrating immune cells. RFR exposure increased the activation and cytotoxicity signatures of tumor-infiltrating CD8+ T cells, particularly in the early activation subset with upregulated genes associated with T cell cytotoxicity. The PD-1 checkpoint pathway was upregulated by RFR exposure in CD8+ T cells. RFR exposure also augmented NK cell subsets with increased cytotoxic characteristics in PMM. RFR exposure enhanced the effector function of tumor-infiltrating CD8+ T cells and NK cells, evidenced by increased expression of cytotoxic molecules. RFR-induced inhibition of PMM growth was mediated by RFR-activated CD8+ T cells and NK cells. We conclude that noninvasive RFR exposure induces antitumor remodeling of the TIME, leading to inhibition of tumor progression, which provides a promising novel strategy for TIME priming and potential combination with cancer immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Killer Cells, Natural , Lung Neoplasms , Mice, Inbred C57BL , Tumor Microenvironment , Animals , Killer Cells, Natural/immunology , Tumor Microenvironment/immunology , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/therapy , CD8-Positive T-Lymphocytes/immunology , Mice , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Melanoma, Experimental/therapy , Lymphocytes, Tumor-Infiltrating/immunology , Phenotype , Programmed Cell Death 1 Receptor , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology
9.
Protein Sci ; 33(4): e4937, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38501488

ABSTRACT

Cellulosomes are intricate cellulose-degrading multi-enzymatic complexes produced by anaerobic bacteria, which are valuable for bioenergy development and biotechnology. Cellulosome assembly relies on the selective interaction between cohesin modules in structural scaffolding proteins (scaffoldins) and dockerin modules in enzymes. Although the number of tandem cohesins in the scaffoldins is believed to determine the complexity of the cellulosomes, tandem dockerins also exist, albeit very rare, in some cellulosomal components whose assembly and functional roles are currently unclear. In this study, we characterized the structure and mode of assembly of a tandem bimodular double-dockerin, which is connected to a putative S8 protease in the cellulosome-producing bacterium, Clostridium thermocellum. Crystal and NMR structures of the double-dockerin revealed two typical type I dockerin folds with significant interactions between them. Interaction analysis by isothermal titration calorimetry and NMR titration experiments revealed that the double-dockerin displays a preference for binding to the cell-wall anchoring scaffoldin ScaD through the first dockerin with a canonical dual-binding mode, while the second dockerin module was unable to bind to any of the tested cohesins. Surprisingly, the double-dockerin showed a much higher affinity to a cohesin from the CipC scaffoldin of Clostridium cellulolyticum than to the resident cohesins from C. thermocellum. These results contribute valuable insights into the structure and assembly of the double-dockerin module, and provide the basis for further functional studies on multiple-dockerin modules and cellulosomal proteases, thus highlighting the complexity and diversity of cellulosomal components.


Subject(s)
Clostridium thermocellum , Cohesins , Clostridium thermocellum/chemistry , Cell Cycle Proteins/chemistry , Chromosomal Proteins, Non-Histone/chemistry , Multienzyme Complexes , Bacterial Proteins/chemistry
10.
Int J Biol Macromol ; 262(Pt 1): 129998, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38336326

ABSTRACT

How to effectively improve the poor interfacial adhesion between polylactic acid/poly(butylene adipate-co-terephthalate) (PLA/PBAT) matrix and thermoplastic starch (TPS) is still a challenge. Therefore, this work aims to introduce a convenient method to enhance the performance of PLA/PBAT/TPS blend by melt reactive extrusion. Here, using 4,4'-methylene-bis(N,N-diglycidyl-aniline) (MBDG) containing four epoxy groups as a reactive compatibilizer, and respectively using 1-methylimidazole (MI) or triethylenediamine (TD) as a catalyzer, serial PLA/PBAT/TPS ternary bio-composites are successfully prepared via melt reactive extrusion. The results showed that, under the catalysis of organic base, especially MI, the epoxy groups of MBDG can effectively react with hydroxyl and carboxyl groups of PLA/PBAT and hydroxyl groups in TPS to form chain-expanded and cross-linked structures. The tensile strength of the composites is increased by 20.0 % from 21.1 MPa, and the elongation at break is increased by 182.4 % from 17.6 % owing to the chain extension and the forming of cross-linked structures. The molecular weight, thermal stability, crystallinity, and surface hydrophobicity of the materials are gradually improved with the increase of MBDG content. The melt fluidity of the composites is also improved due to the enhancement of compatibility. The obtained PLA/PBAT/TPS materials have the potential to be green plastic products with good properties.


Subject(s)
Alkenes , Epoxy Resins , Phthalic Acids , Polyesters , Adipates , Starch
11.
Plant Physiol Biochem ; 207: 108380, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38244389

ABSTRACT

It is crucial to clarify the physiological responses of wheat (T. aestivum) plants to source-sink manipulation and assimilation transportation under drought stress during domestication of dryland wheat. In this research, a two-year field experiment was conducted using nine wheat cultivars in a semiarid site of northwest China. The source-sink manipulation treatments including defoliation of flag leaves and 50% removal of ears were applied at the anthesis stage under two levels of drought stress conditions i.e. progressive water supply (PWS) and rainfed drought treatment (RDT). Our results indicated that drought stress reduced the dry weight of leaves, sheaths and stems, as well as caused a significant yield reduction. High ploidy wheat exhibits a greater capacity to sustain higher grain yields when subjected to drought stress, primarily due to its stronger buffer capacity between source supply and sink demand. All wheat species with different ploidy levels had a certain degree of source limitation and sink restriction. During the domestication of wheat, the type of source and sink might be ploidy-dependent with progressive water deficit, but similar interactive relationships. The source-sink ratio of tetraploid species was the largest, while that of hexaploid species was the lowest.


Subject(s)
Triticum , Water , Triticum/genetics , Domestication , Edible Grain , Plant Leaves/physiology
12.
J Cardiovasc Comput Tomogr ; 18(2): 195-202, 2024.
Article in English | MEDLINE | ID: mdl-38267335

ABSTRACT

BACKGROUND: Allopurinol, a xanthine inhibitor that lowers uric acid concentration, has been proven to reduce inflammation and oxidative stress in patients with cardiovascular disease. However, it is unknown whether these beneficial effects translate into favorable plaque modification in acute coronary syndromes (ACS). This study aimed to investigate whether allopurinol could improve coronary plaque stabilization using coronary computed tomography angiography (CCTA). METHODS: This was a prospective, single-center, randomized, double-blind clinical trial began in March 2019. A total of 162 ACS patients aged 18-80 years with a blood level of high-sensitivity C-reactive protein (hsCRP) â€‹> â€‹2 â€‹mg/L were included. The subjects were randomly assigned in a 1:1 ratio to receive either allopurinol sustained-release capsules (at a dose of 0.25 â€‹g once daily) or placebo for 12 months. The plaque analysis was performed at CCTA. The primary efficacy endpoint was the change in low-attenuation plaque volume (LAPV) from baseline to the 12-month follow-up. RESULTS: Among 162 patients, 54 in allopurinol group and 51 in placebo group completed the study. The median follow-up duration was 14 months in both groups. Compared with placebo, allopurinol therapy did not significantly alter LAPV (-13.4 â€‹± â€‹3.7 â€‹% vs. -17.8 â€‹± â€‹3.6 â€‹%, p â€‹= â€‹0.390), intermediate attenuation plaque volume (-16.1 â€‹± â€‹3.0 â€‹% vs. -16.2 â€‹± â€‹2.9 â€‹%, p â€‹= â€‹0.992), dense calcified plaque volume (12.2 â€‹± â€‹13.7 â€‹% vs. 9.7 â€‹± â€‹13.0 â€‹%, p â€‹= â€‹0.894), total atheroma volume (-15.2 â€‹± â€‹3.2 â€‹% vs. -16.4 â€‹± â€‹3.1 â€‹%, p â€‹= â€‹0.785), remodeling index (2.0 â€‹± â€‹3.9 â€‹% vs. 5.4 â€‹± â€‹3.8 â€‹%, p â€‹= â€‹0.536) or hsCRP levels (-73.6 [-91.6-17.9] % vs. -81.2 [-95.4-47.7] %, p â€‹= â€‹0.286). CONCLUSIONS: Our findings suggest that allopurinol does not improve atherosclerotic plaque stability or inflammation in ACS.


Subject(s)
Acute Coronary Syndrome , Allopurinol , Plaque, Atherosclerotic , Humans , Acute Coronary Syndrome/diagnostic imaging , Acute Coronary Syndrome/drug therapy , Allopurinol/therapeutic use , C-Reactive Protein , Coronary Angiography/methods , Inflammation , Predictive Value of Tests , Prospective Studies , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over
13.
Sci Total Environ ; 917: 170417, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38280611

ABSTRACT

Drought is a potent abiotic stressor that arrests crop growth, significantly affecting crop health and yields. The arbuscular mycorrhizal fungi (AMF), and plant growth-promoting rhizobacteria (PGPR) can offer to protect plants from stressful environments through improving water, and nutrient use efficiency by strengthening plant root structure and harnessing favorable rhizosphere environments. When Acaulospora laevis (AMF) and Bacillus subtilus (PGPR) are introduced in combination, enhanced root growth and beneficial microbial colonization can mitigate drought stress. To assess this potential, a pot experiment was done with maize (Zea mays L.) to explore the effects of A. laevis and B. subtilus under different water levels (well-watered = 80 %; moderate water stress = 55 %; and severe water stress = 35 %) on maize yield, soil microbial activities, nutrients contents, root, and leaf functioning. Plants exposed to severe drought stress hampered their root and leaf functioning, and reduced grain yield compared with control plants. Combined use of AMF and PGPR increased root colonization (104.6 %-113.2 %) and microbial biomass carbon (36.38 %-40.23 %) under moderate to severe drought conditions over control. Higher root colonization was strongly linked with elevated ACC (aminocyclopropane-1-carboxylic acid) production, subsequently enhancing water use efficiency (21.62 %-12.77 %), root hydraulic conductivity (1.9 %-1.4 %) and root nutrient uptake under moderate to severe drought conditions. Enhanced nutrient uptake further promoted leaf photosynthetic rate by 27.3 %-29.8 % under moderate and severe drought stress. Improving leaf and root physiological functioning enhanced maize grain yield under stressful environments. Furthermore, co-inoculation with AMF-PGPR reduced cellular damage by lowering oxidative enzyme levels and increasing antioxidative enzyme activities, improving plant performance and grain yield under stressful environments. Conclusively, the synergistic interaction of AMF with PGPR ensured plant stress tolerance by reducing cellular injury, facilitating root-leaf functioning, enhancing nutrient-water-use-efficiencies, and increasing yield under drought stress.


Subject(s)
Mycorrhizae , Mycorrhizae/physiology , Zea mays , Soil , Plant Roots/microbiology , Feedback , Dehydration
14.
J Asian Nat Prod Res ; 26(1): 139-145, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38050667

ABSTRACT

Four new 2-pyrone derivatives, two pairs of enantiomers, (±)-egypyrone A [(±)-1] and (±)-egypyrone B [(±)-2], together with a new benzophenone analogue, orbiophenone B (3), were isolated from the endophytic fungus Penicillium egyptiacum. The enantiomeric mixtures (±)-1 and (±)-2 were separated through chiral HPLC, respectively. Their structures were elucidated by extensive analysis of spectroscopic data and the absolute configuration was determined by comparing the optical rotation of structurally similar molecule. Subsequently, the cytotoxic activities of (±)-1, (±)-2, and 3 against the U87 cell line were tested and no activity was observed at a concentration of 10 µM.


Subject(s)
Penicillium , Penicillium/chemistry , Fungi , Pyrones/chemistry , Molecular Structure
15.
Expert Opin Drug Discov ; 19(2): 239-251, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37978948

ABSTRACT

INTRODUCTION: Vinyl sulfones are a special sulfur-containing structural unit that have attracted considerable attention, owing to their important role in serving as key structural motifs of various biologically active compounds as well as serving as versatile building blocks for organic transformations. The synthetic strategy of vinyl sulfone derivatives has been substantially upgraded over the past 30 years, and the wide application of this functional group in drug design and discovery has been promoted. AREA COVERED: In this review, the authors review the application of vinyl sulfones in drug discovery and select optimized compounds which might have significant impact or potential inspiration for drug design. EXPERT OPINION: Vinyl sulfones have been reported to target various macromolecular targets via non-covalent or covalent interactions, including multiple kinases, tubulin, cysteine protease, transcription factor, and so on. Thus, it has been significantly applied as a privileged scaffold in the design of anticancer, anti-infective, anti-inflammatory, and neuroprotective agents. However, much work remains to be done to improve the drug-like properties, such as chemical and metabolic stability, ADME, and toxicity. Besides, the chemical space of vinyl sulfones needs to be expanded, including but not limited to the design of constrained endocyclic and exocyclic vinyl sulfones.


Subject(s)
Neuroprotective Agents , Sulfones , Humans , Sulfones/chemistry , Transcription Factors , Drug Design
16.
World J Clin Cases ; 11(30): 7502-7507, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37969449

ABSTRACT

BACKGROUND: For the treatment of distal clavicle fractures, each treatment method has its own advantages and disadvantages, and there is no optimal surgical solution. CASE SUMMARY: Based on this, we report 2 cases of distal clavicle fractures treated utilizing an anterior inferior plate with a single screw placed in the distal, in anticipation of providing a better surgical approach to distal clavicle fracture treatment. Two patients were admitted to the hospital after trauma with a diagnosis of distal clavicle fracture, and were admitted to the hospital for internal fixation of clavicle fracture by incision and reduction, with good postoperative functional recovery. CONCLUSION: With solid postoperative fixation and satisfactory prognostic functional recovery, this technique has been shown to be simple, easy to perform and effective.

17.
Water Res ; 245: 120581, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37703757

ABSTRACT

Polyethylene film mulching is a key technology for soil water retention in dryland agriculture, but the aging of the films can generate a large number of microplastics with different shapes. There exists a widespread misunderstanding that the concentrations of microplastics might be the determinant affecting the diversity and assembly of soil bacterial communities, rather than their shapes. Here, we examined the variations of soil bacteria community composition and functioning under two-year field incubation by four shapes (ball, fiber, fragment and powder) of microplastics along the concentration gradients (0.01%, 0.1% and 1%). Data showed that specific surface area of microplastics was significantly positively correlated with the variations of bacterial community abundance and diversity (r=0.505, p<0.05). The fragment- and fiber-shape microplastics displayed more pronounced interfacial continuity with soil particles and induced greater soil bacterial α-diversity, relative to the powder- and ball-shape ones. Strikingly, microplastic concentrations were not significantly correlated with bacterial community indices (r=0.079, p>0.05). Based on the variations of the ßNTI, bacterial community assembly actually followed both stochastic and deterministic processes, and microplastic shapes significantly modified soil biogeochemical cycle and ecological functions. Therefore, the shapes of microplastics, rather than the concentration, significantly affected soil bacterial community assembly, in association with microplastic-soil-water interfaces.

18.
Ecotoxicol Environ Saf ; 264: 115399, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37639827

ABSTRACT

Physical thickness of low-density polyethylene (LDPE) films might determine the release rate of phthalic acid esters (PAEs) & structural integrity and affect production efficiency. However, this critical issue is still unclear and little reported. Aging effects were evaluated in LDPE films with the thickness of 0.006, 0.008, 0.010 and 0.015 mm in a maize field of irrigation region. The Scanning electron microscope (SEM) results showed that the proportion of damaged area (Dam) to total area of LDPE films was massively lowered with increasing thickness after aging. The highest and lowest Dam was 32.2% and 3.5% in 0.006 and 0.015 mm films respectively. Also, the variations in peak intensity of asymmetric & symmetrical stretching vibrations (ASVI & SSVI) were detected using Fourier transform infrared spectrum (FTIR), indicating that the declines in peak intensity tended to be slower with thickness. Interestingly, the declines in physical integrity were tightly associated with increasing exhalation rate of PAEs. Average releasing rate of PAEs was 38.2%, 31.4%, 31.5% and 19.7% in LDPE films from 0.006 to 0.015 mm respectively. Critically, thicker film mulching can lead to greater soil water storage at plough layer (SWS-PL) and better thermal status, accordingly harvesting higher economic benefit. Therefore, LDPE film thickening may be a solution to reduce environmental risk but improve production efficiency in arid region.


Subject(s)
Light , Polyethylene , Soil , Vibration
19.
Sci Total Environ ; 900: 165814, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37517723

ABSTRACT

The primary utilization strategy for meadow grasslands on the Qinghai-Tibet Plateau (QTP) is livestock grazing. This practice is considered as one of the major drivers of plant-associated bacterial community construction and changes in soil properties. The species of Kobresia humilis is considered as the most dominant one in grasslands. However, how different grazing practices affect the phyllosphere and rhizosphere bacterial communities of K. humilis is unknown. To address this issue, the effects of the grazing enclosure (GE), single-species grazing (YG and SG, representing yak only and sheep only, respectively), and different ratios of grazing (ratio of yak to sheep is 1:2, 1:4, and 1:6, represented by MG1:2, MG1:4, and MG1:6, respectively) on the dominant plant of K. humilis, it's phyllosphere and rhizosphere bacteria, and soil properties were investigated using artificially controlled grazing and grazing enclosure. Our data showed that grazing enclosure enhanced vegetation coverage, and rhizosphere bacterial richness and diversity, while reduced plant number and bacterial network stability of K. humilis. The NO3--N, K+, and Cl- concentrations were lower under grazing compared to GE. SG reduced the concentration of NH4+-N, TN, K+, and Na+ compared to YG. Moderate grazing intensity had a lower relative abundance of the r-strategists (Bacteroidota and Gammaproteobacteria) with higher bacterial network stability. Yak and sheep grazing showed reversed impacts on the bacterial network stability between the phyllosphere and rhizosphere of K. humilis. Proteobacteria and Actinobacteriota were identified in the molecular ecological network analysis as keystone taxa in the phyllosphere and rhizosphere networks, respectively, under all treatments. This study explained why sheep grazing has more adverse effects on grazing-tolerant grass species, K. humilis, than yak grazing, and will contribute to a better understanding of the impacts of different grazing practices and grazing enclosure on alpine grassland ecosystems on the QTP.


Subject(s)
Carex Plant , Ecosystem , Animals , Sheep , Grassland , Rhizosphere , Tibet , Bacteria , Soil
20.
Acta Pharmacol Sin ; 44(11): 2243-2252, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37407703

ABSTRACT

Group 3 innate lymphoid cells (ILC3s) are mediators of intestinal immunity and barrier function. Recent studies have investigated the role of the mammalian target of rapamycin complex (mTOR) in ILC3s, whereas the mTORC1-related mechanisms and crosstalk between mTORC1 and mTORC2 involved in regulating ILC3 homeostasis remain unknown. In this study, we found that mTORC1 but not mTORC2 was critical in ILC3 development, IL-22 production, and ILC3-mediated intestinal homeostasis. Single-cell RNA sequencing revealed that mTORC1 deficiency led to disruption of ILC3 heterogeneity, showing an increase in differentiation into ILC1-like phenotypes. Mechanistically, mTORC1 deficiency decreased the expression of NFIL3, which is a critical transcription factor responsible for ILC3 development. The activities of both mTORC1 and mTORC2 were increased in wild-type ILC3s after activation by IL-23, whereas inhibition of mTORC1 by Raptor deletion or rapamycin treatment resulted in increased mTORC2 activity. Previous studies have demonstrated that S6K, the main downstream target of mTORC1, can directly phosphorylate Rictor to dampen mTORC2 activity. Our data found that inhibition of mTORC1 activity by rapamycin reduced Rictor phosphorylation in ILC3s. Reversing the increased mTORC2 activity via heterozygous or homozygous knockout of Rictor in Raptor-deleted ILC3s resulted in severe ILC3 loss and complete susceptibility to intestinal infection in mice with mTORC1 deficiency (100% mortality). Thus, mTORC1 acts as a rheostat of ILC3 heterogeneity, and mTORC2 protects ILC3s from severe loss of cells and immune activity against intestinal infection when mTORC1 activity is diminished.


Subject(s)
Immunity, Innate , Lymphocytes , Mice , Animals , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , Regulatory-Associated Protein of mTOR/genetics , Transcription Factors/metabolism , Sirolimus/pharmacology , Mammals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL