Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
J Magn Reson Imaging ; 59(3): 929-938, 2024 Mar.
Article En | MEDLINE | ID: mdl-37366349

BACKGROUND: Apparent diffusion coefficient is not specifically sensitive to tumor microstructure and therapy-induced cellular changes. PURPOSE: To investigate time-dependent diffusion imaging with the short-time-limit random walk with barriers model (STL-RWBM) for quantifying microstructure parameters and early cancer cellular response to therapy. STUDY TYPE: Prospective. POPULATION: Twenty-seven patients (median age of 58 years and 7.4% of females) with p16+/p16- oropharyngeal/oral cavity squamous cell carcinomas (OPSCC/OCSCC) underwent MRI scans before therapy, of which 16 patients had second scans at 2 weeks of the 7-weeks chemoradiation therapy (CRT). FIELD STRENGTH/SEQUENCE: 3-T, diffusion sequence with oscillating gradient spine echo (OGSE) and pulse gradient spin echo (PGSE). ASSESSMENT: Diffusion weighted images were acquired using OGSE and PGSE. Effective diffusion times were derived for the STL-RWBM to estimate free diffusion coefficient D0 , volume-to-surface area ratio of cellular membranes V/S, and cell membrane permeability κ. Mean values of these parameters were calculated in tumor volumes. STATISTICAL TESTS: Tumor microstructure parameters were compared with clinical stages of p16+ I-II OPSCC, p16+ III OPSCC, and p16- IV OCSCC by Spearman's rank correlation and with digital pathological analysis of a resected tissue sample. Tumor microstructure parameter responses during CRT in the 16 patients were assessed by paired t-tests. A P-value of <0.05 was considered statistically significant. RESULTS: The derived effective diffusion times affected estimated values of V/S and κ by 40%. The tumor V/S values were significantly correlated with clinical stages (r = 0.47) as an increase from low to high clinical stages. The in vivo estimated cell size agreed with one from pathological analysis of a tissue sample. Early tumor cellular responses showed a significant increase in D0 (14%, P = 0.03) and non-significant increases in κ (56%, P = 0.6) and V/S (10%, P = 0.1). DATA CONCLUSION: Effective diffusion time estimation might impact microstructure parameter estimation. The tumor V/S was correlated with OPSCC/OCSCC clinical stages. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 1.


Carcinoma, Squamous Cell , Head and Neck Neoplasms , Female , Humans , Middle Aged , Squamous Cell Carcinoma of Head and Neck , Prospective Studies , Magnetic Resonance Imaging , Diffusion Magnetic Resonance Imaging/methods
2.
J Magn Reson Imaging ; 55(6): 1745-1758, 2022 06.
Article En | MEDLINE | ID: mdl-34767682

BACKGROUND: Diffusion-weighted imaging (DWI) is commonly used to detect prostate cancer, and a major clinical challenge is differentiating aggressive from indolent disease. PURPOSE: To compare 14 site-specific parametric fitting implementations applied to the same dataset of whole-mount pathologically validated DWI to test the hypothesis that cancer differentiation varies with different fitting algorithms. STUDY TYPE: Prospective. POPULATION: Thirty-three patients prospectively imaged prior to prostatectomy. FIELD STRENGTH/SEQUENCE: 3 T, field-of-view optimized and constrained undistorted single-shot DWI sequence. ASSESSMENT: Datasets, including a noise-free digital reference object (DRO), were distributed to the 14 teams, where locally implemented DWI parameter maps were calculated, including mono-exponential apparent diffusion coefficient (MEADC), kurtosis (K), diffusion kurtosis (DK), bi-exponential diffusion (BID), pseudo-diffusion (BID*), and perfusion fraction (F). The resulting parametric maps were centrally analyzed, where differentiation of benign from cancerous tissue was compared between DWI parameters and the fitting algorithms with a receiver operating characteristic area under the curve (ROC AUC). STATISTICAL TEST: Levene's test, P < 0.05 corrected for multiple comparisons was considered statistically significant. RESULTS: The DRO results indicated minimal discordance between sites. Comparison across sites indicated that K, DK, and MEADC had significantly higher prostate cancer detection capability (AUC range = 0.72-0.76, 0.76-0.81, and 0.76-0.80 respectively) as compared to bi-exponential parameters (BID, BID*, F) which had lower AUC and greater between site variation (AUC range = 0.53-0.80, 0.51-0.81, and 0.52-0.80 respectively). Post-processing parameters also affected the resulting AUC, moving from, for example, 0.75 to 0.87 for MEADC varying cluster size. DATA CONCLUSION: We found that conventional diffusion models had consistent performance at differentiating prostate cancer from benign tissue. Our results also indicated that post-processing decisions on DWI data can affect sensitivity and specificity when applied to radiological-pathological studies in prostate cancer. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 3.


Diffusion Magnetic Resonance Imaging , Prostatic Neoplasms , Diffusion Magnetic Resonance Imaging/methods , Humans , Male , Prospective Studies , Prostatic Neoplasms/diagnostic imaging , ROC Curve , Retrospective Studies , Sensitivity and Specificity
3.
Int J Radiat Oncol Biol Phys ; 110(3): 792-803, 2021 07 01.
Article En | MEDLINE | ID: mdl-33524546

PURPOSE: We hypothesized that dose-intensified chemoradiation therapy targeting adversely prognostic hypercellular (TVHCV) and hyperperfused (TVCBV) tumor volumes would improve outcomes in patients with glioblastoma. METHODS AND MATERIALS: This single-arm, phase 2 trial enrolled adult patients with newly diagnosed glioblastoma. Patients with a TVHCV/TVCBV >1 cm3, identified using high b-value diffusion-weighted magnetic resonance imaging (MRI) and dynamic contrast-enhanced perfusion MRI, were treated over 30 fractions to 75 Gy to the TVHCV/TVCBV with temozolomide. The primary objective was to estimate improvement in 12-month overall survival (OS) versus historical control. Secondary objectives included evaluating the effect of 3-month TVHCV/TVCBV reduction on OS using Cox proportional-hazard regression and characterizing coverage (95% isodose line) of metabolic tumor volumes identified using correlative 11C-methionine positron emission tomography. Clinically meaningful change was assessed for quality of life by the European Organisation for the Research and Treatment of Cancer Quality of Life Questionnaire C30, for symptom burden by the MD Anderson Symptom Inventory for brain tumor, and for neurocognitive function (NCF) by the Controlled Oral Word Association Test, the Trail Making Test, parts A and B, and the Hopkins Verbal Learning Test-Revised. RESULTS: Between 2016 and 2018, 26 patients were enrolled. Initial patients were boosted to TVHCV alone, and 13 patients were boosted to both TVHCV/TVCBV. Gross or subtotal resection was performed in 87% of patients; 22% were O6-methylguanine-DNA methyltransferase (MGMT) methylated. With 26-month follow-up (95% CI, 19-not reached), the 12-month OS rate among patients boosted to the combined TVHCV/TVCBV was 92% (95% CI, 78%-100%; P = .03) and the median OS was 20 months (95% CI, 18-not reached); the median OS for the whole study cohort was 20 months (95% CI, 14-29 months). Patients whose 3-month TVHCV/TVCBV decreased to less than the median volume (3 cm3) had superior OS (29 vs 12 months; P = .02). Only 5 patients had central or in-field failures, and 93% (interquartile range, 59%-100%) of the 11C-methionine metabolic tumor volumes received high-dose coverage. Late grade 3 neurologic toxicity occurred in 2 patients. Among non-progressing patients, 1-month and 7-month deterioration in quality of life, symptoms, and NCF were similar in incidence to standard therapy. CONCLUSIONS: Dose intensification against hypercellular/hyperperfused tumor regions in glioblastoma yields promising OS with favorable outcomes for NCF, symptom burden, and quality of life, particularly among patients with greater tumor reduction 3 months after radiation therapy.


Glioblastoma/therapy , Radiation Dosage , Adult , Aged , Chemoradiotherapy , Female , Glioblastoma/diagnosis , Humans , Male , Middle Aged , Quality of Life , Radiotherapy Dosage
4.
J Med Imaging (Bellingham) ; 5(1): 011009, 2018 Jan.
Article En | MEDLINE | ID: mdl-29181433

To create tumor "habitats" from the "signatures" discovered from multimodality metabolic and physiological images, we developed a framework of a processing pipeline. The processing pipeline consists of six major steps: (1) creating superpixels as a spatial unit in a tumor volume; (2) forming a data matrix [Formula: see text] containing all multimodality image parameters at superpixels; (3) forming and clustering a covariance or correlation matrix [Formula: see text] of the image parameters to discover major image "signatures;" (4) clustering the superpixels and organizing the parameter order of the [Formula: see text] matrix according to the one found in step 3; (5) creating "habitats" in the image space from the superpixels associated with the "signatures;" and (6) pooling and clustering a matrix consisting of correlation coefficients of each pair of image parameters from all patients to discover subgroup patterns of the tumors. The pipeline was applied to a dataset of multimodality images in glioblastoma (GBM) first, which consisted of 10 image parameters. Three major image "signatures" were identified. The three major "habitats" plus their overlaps were created. To test generalizability of the processing pipeline, a second image dataset from GBM, acquired on the scanners different from the first one, was processed. Also, to demonstrate the clinical association of image-defined "signatures" and "habitats," the patterns of recurrence of the patients were analyzed together with image parameters acquired prechemoradiation therapy. An association of the recurrence patterns with image-defined "signatures" and "habitats" was revealed. These image-defined "signatures" and "habitats" can be used to guide stereotactic tissue biopsy for genetic and mutation status analysis and to analyze for prediction of treatment outcomes, e.g., patterns of failure.

5.
Tomography ; 2(4): 341-352, 2016 Dec.
Article En | MEDLINE | ID: mdl-28111634

This study aimed to develop an automated model to extract temporal features from DCE-MRI in head-and-neck (HN) cancers to localize significant tumor subvolumes having low blood volume (LBV) for predicting local and regional failure after chemoradiation therapy. Temporal features were extracted from time-intensity curves to build classification model for differentiating voxels with LBV from those with high BV. Support vector machine (SVM) classification was trained on the extracted features for voxel classification. Subvolumes with LBV were then assembled from the classified voxels with LBV. The model was trained and validated on independent datasets created from 456 873 DCE curves. The resultant subvolumes were compared to ones derived by a 2-step method via pharmacokinetic modeling of blood volume, and evaluated for classification accuracy and volumetric similarity by DSC. The proposed model achieved an average voxel-level classification accuracy and DSC of 82% and 0.72, respectively. Also, the model showed tolerance on different acquisition parameters of DCE-MRI. The model could be directly used for outcome prediction and therapy assessment in radiation therapy of HN cancers, or even supporting boost target definition in adaptive clinical trials with further validation. The model is fully automatable, extendable, and scalable to extract temporal features of DCE-MRI in other tumors.

6.
Comput Med Imaging Graph ; 39: 3-13, 2015 Jan.
Article En | MEDLINE | ID: mdl-25016956

Literature-based image informatics techniques are essential for managing the rapidly increasing volume of information in the biomedical domain. Compound figure separation, modality classification, and image retrieval are three related tasks useful for enabling efficient access to the most relevant images contained in the literature. In this article, we describe approaches to these tasks and the evaluation of our methods as part of the 2013 medical track of ImageCLEF. In performing each of these tasks, the textual and visual features used to represent images are an important consideration often left unaddressed. Therefore, we also describe a gradient-based optimization strategy for determining meaningful combinations of features and apply the method to the image retrieval task. An evaluation of our optimization strategy indicates the method is capable of producing statistically significant improvements in retrieval performance. Furthermore, the results of the 2013 ImageCLEF evaluation demonstrate the effectiveness of our techniques. In particular, our text-based and mixed image retrieval methods ranked first among all the participating groups.


Documentation/standards , Image Interpretation, Computer-Assisted/methods , Natural Language Processing , Pattern Recognition, Automated/methods , Periodicals as Topic , Terminology as Topic , Artificial Intelligence , Semantics
7.
AMIA Annu Symp Proc ; 2012: 866-75, 2012.
Article En | MEDLINE | ID: mdl-23304361

Image content is frequently the target of biomedical information extraction systems. However, the meaning of this content cannot be easily understood without some associated text. In order to improve the integration of textual and visual information, we are developing a visual ontology for biomedical image retrieval. Our visual ontology maps the appearance of image regions to concepts in an existing textual ontology, thereby inheriting relationships among the visual entities. Such a resource creates a bridge between the visual characteristics of important image regions and their semantic interpretation. We automatically populate our visual ontology by pairing image regions with their associated descriptions. To demonstrate the usefulness of this resource, we have developed a classification method that automatically labels image regions with appropriate concepts based solely on their appearance. Our results for thoracic imaging terms show that our methods are promising first steps towards the creation of a biomedical visual ontology.


Diagnostic Imaging , Information Storage and Retrieval , Vocabulary, Controlled , Database Management Systems , Diagnostic Imaging/classification , Radiology Information Systems
...