Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Sci ; 186(2): 221-241, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35134991

ABSTRACT

Elucidation of predictive fluidic biochemical markers to detect and monitor chemical-induced neurodegeneration has been a major challenge due to a lack of understanding of molecular mechanisms driving altered neuronal morphology and function, as well as poor sensitivity in methods to quantify low-level biomarkers in bodily fluids. Here, we evaluated 5 neurotoxicants (acetaminophen [negative control], bisindolylmaleimide-1, colchicine, doxorubicin, paclitaxel, and rotenone) in human-induced pluripotent stem cell-derived neurons to profile secreted microRNAs (miRNAs) at early and late stages of decline in neuronal cell morphology and viability. Based on evaluation of these morphological (neurite outgrowth parameters) and viability (adenosine triphosphate) changes, 2 concentrations of each chemical were selected for analysis in a human 754 miRNA panel: a low concentration with no/minimal effect on cell viability but a significant decrease in neurite outgrowth, and a high concentration with a significant decrease in both endpoints. A total of 39 miRNAs demonstrated significant changes (fold-change ≥ 1.5 or ≤ 0.67, p value < .01) with at least 1 exposure. Further analyses of targets modulated by these miRNAs revealed 38 key messenger RNA targets with roles in neurological dysfunctions, and identified transforming growth factor-beta (TGF-ß) signaling as a commonly enriched pathway. Of the 39 miRNAs, 5 miRNAs, 3 downregulated (miR-20a, miR-30b, and miR-30d) and 3 upregulated (miR-1243 and miR-1305), correlated well with morphological changes induced by multiple neurotoxicants and were notable based on their relationship to various neurodegenerative conditions and/or key pathways, such as TGF-ß signaling. These datasets reveal miRNA candidates that warrant further evaluation as potential safety biomarkers of chemical-induced neurodegeneration.


Subject(s)
Induced Pluripotent Stem Cells , MicroRNAs , Biomarkers/metabolism , Gene Expression Profiling/methods , Humans , Induced Pluripotent Stem Cells/metabolism , MicroRNAs/metabolism , Neurons , Transforming Growth Factor beta/metabolism
2.
Drug Metab Dispos ; 48(6): 459-480, 2020 06.
Article in English | MEDLINE | ID: mdl-32193359

ABSTRACT

Multidrug resistance protein 1 (MDR1, ABCB1, P-glycoprotein) and breast cancer resistance protein (BCRP, ABCG2) are key efflux transporters that mediate the extrusion of drugs and toxicants in cancer cells and healthy tissues, including the liver, kidneys, and the brain. Altering the expression and activity of MDR1 and BCRP influences the disposition, pharmacodynamics, and toxicity of chemicals, including a number of commonly prescribed medications. Histone acetylation is an epigenetic modification that can regulate gene expression by changing the accessibility of the genome to transcriptional regulators and transcriptional machinery. Recently, studies have suggested that pharmacological inhibition of histone deacetylases (HDACs) modulates the expression and function of MDR1 and BCRP transporters as a result of enhanced histone acetylation. This review addresses the ability of HDAC inhibitors to modulate the expression and the function of MDR1 and BCRP transporters and explores the molecular mechanisms by which HDAC inhibition regulates these transporters. While the majority of studies have focused on histone regulation of MDR1 and BCRP in drug-resistant and drug-sensitive cancer cells, emerging data point to similar responses in nonmalignant cells and tissues. Elucidating epigenetic mechanisms regulating MDR1 and BCRP is important to expand our understanding of the basic biology of these two key transporters and subsequent consequences on chemoresistance as well as tissue exposure and responses to drugs and toxicants. SIGNIFICANCE STATEMENT: Histone deacetylase inhibitors alter the expression of key efflux transporters multidrug resistance protein 1 and breast cancer resistance protein in healthy and malignant cells.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Epigenesis, Genetic/drug effects , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Neoplasm Proteins/genetics , ATP Binding Cassette Transporter, Subfamily B/genetics , Acetylation/drug effects , Animals , Drug Resistance/drug effects , Drug Resistance/genetics , Histones/metabolism , Humans , Models, Animal
3.
Toxicol Sci ; 175(2): 220-235, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32170957

ABSTRACT

Zileuton is an orally active inhibitor of leukotriene synthesis for maintenance treatment of asthma, for which clinical usage has been associated with idiosyncratic liver injury. Mechanistic understanding of zileuton toxicity is hampered by the rarity of the cases and lack of an animal model. A promising model for mechanistic study of rare liver injury is the Diversity Outbred (J:DO) mouse population, with genetic variation similar to that found in humans. In this study, female DO mice were administered zileuton or vehicle daily for 7 days (i.g.). Serum liver enzymes were elevated in the zileuton group, with marked interindividual variability in response. Zileuton exposure-induced findings in susceptible DO mice included microvesicular fatty change, hepatocellular mitosis, and hepatocellular necrosis. Inducible nitric oxide synthase and nitrotyrosine abundance were increased in livers of animals with necrosis and those with fatty change, implicating nitrosative stress as a possible injury mechanism. Conversely, DO mice lacking adverse liver pathology following zileuton exposure experienced decreased hepatic concentrations of resistin and increased concentrations of insulin and leptin, providing potential clues into mechanisms of toxicity resistance. Transcriptome pathway analysis highlighted mitochondrial dysfunction and altered fatty acid oxidation as key molecular perturbations associated with zileuton exposure, and suggested that interindividual differences in cytochrome P450 metabolism, glutathione-mediated detoxification, and farnesoid X receptor signaling may contribute to zileuton-induced liver injury (ZILI). Taken together, DO mice provided a platform for investigating mechanisms of toxicity and resistance in context of ZILI which may lead to targeted therapeutic interventions.


Subject(s)
Chemical and Drug Induced Liver Injury/physiopathology , Genetic Predisposition to Disease , Homeostasis/drug effects , Hydroxyurea/toxicity , Lipids/biosynthesis , Nitrosative Stress/drug effects , Stress, Physiological/drug effects , Animals , Anti-Asthmatic Agents/toxicity , Asthma/drug therapy , Collaborative Cross Mice , Disease Models, Animal , Female , Mice
4.
Mol Neurobiol ; 56(10): 6986-7002, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30963442

ABSTRACT

Multidrug resistance protein 1 (MDR1, ABCB1, P-glycoprotein) is a critical efflux transporter that extrudes chemicals from the blood-brain barrier (BBB) and limits neuronal exposure to xenobiotics. Prior studies in malignant cells demonstrated that MDR1 expression can be altered by inhibition of histone deacetylases (HDAC), enzymes that modify histone structure and influence transcription factor binding to DNA. Here, we sought to identify the mechanisms responsible for the up-regulation of MDR1 by HDAC inhibitors in human BBB cells. Immortalized human brain capillary endothelial (hCMEC/D3) cells were treated with HDAC inhibitors and assessed for MDR1 expression and function. Of the HDAC inhibitors profiled, valproic acid (VPA), apicidin, and suberoylanilide hydroxamic acid (SAHA) increased MDR1 mRNA and protein levels by 30-200%, which corresponded with reduced intracellular accumulation of the MDR1 substrate rhodamine 123. Interestingly, induction of MDR1 mRNA by HDAC inhibitors mirrored increases in the expression of the aryl hydrocarbon receptor (AHR) and its target gene cytochrome P450 1A1. To explore the role of AHR in HDAC inhibitor-mediated regulation of MDR1, a pharmacological activator (ß-naphthoflavone, ßNF) and inhibitor (CH-223191, CH) of AHR were tested. The induction of MDR1 in cells treated with SAHA was amplified by ßNF and attenuated by CH. Furthermore, SAHA increased the binding of acetylated histone H3K9/K14 and AHR proteins to regions of the MDR1 promoter that contain AHR response elements. In conclusion, HDAC inhibitors up-regulate the expression and activity of the MDR1 transporter in human brain endothelial cells by increasing histone acetylation and facilitating AHR binding at the MDR1 promoter.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Brain/cytology , Endothelial Cells/metabolism , Histones/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Signal Transduction , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Acetylation , Cell Survival/drug effects , DNA/metabolism , Endothelial Cells/drug effects , Histone Deacetylase Inhibitors/pharmacology , Humans , Models, Biological , Promoter Regions, Genetic , Protein Binding/drug effects , Up-Regulation/drug effects , Vorinostat/pharmacology
5.
J Biochem Mol Toxicol ; 33(6): e22318, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30897286

ABSTRACT

Multidrug resistance protein 1 (MDR1) and breast cancer resistance protein (BCRP) protect the brain by restricting the passage of chemicals across the blood-brain barrier. Prior studies have demonstrated the epigenetic regulation of MDR1 and BCRP in cancer cells treated with histone deacetylase (HDAC) inhibitors that enhance histone acetylation and gene transcription. In the present study, we tested the in vivo effects of two HDAC inhibitors, valproic acid (VPA; 400 mg/kg) and apicidin (5 mg/kg), on Mdr1 and Bcrp transporter expression in brain regions of adult male mice injected intraperitoneally daily for 7 days. VPA increased Mdr1 protein expression in the striatum (70%) and Bcrp protein in the midbrain (30%). Apicidin enhanced striatal Mdr1 protein (30%) and hippocampal Bcrp protein (20%). Transporter induction correlated with increased histone H3 acetylation in discrete brain regions. In conclusion, HDAC inhibitors upregulate transporter proteins in vivo, which may be important in regulating regional xenobiotic disposition within the brain.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis , ATP Binding Cassette Transporter, Subfamily G, Member 2/biosynthesis , Brain/metabolism , Gene Expression Regulation/drug effects , Histone Deacetylase Inhibitors/pharmacology , Histones/metabolism , Peptides, Cyclic/pharmacology , Valproic Acid/pharmacology , Acetylation/drug effects , Animals , Histone Deacetylases/metabolism , Male , Mice
6.
Adv Drug Deliv Rev ; 116: 73-91, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28111348

ABSTRACT

Renal proximal tubules are targets for toxicity due in part to the expression of transporters that mediate the secretion and reabsorption of xenobiotics. Alterations in transporter expression and/or function can enhance the accumulation of toxicants and sensitize the kidneys to injury. This can be observed when xenobiotic uptake by carrier proteins is increased or efflux of toxicants and their metabolites is reduced. Nephrotoxic chemicals include environmental contaminants (halogenated hydrocarbon solvents, the herbicide paraquat, the fungal toxin ochratoxin, and heavy metals) as well as pharmaceuticals (certain beta-lactam antibiotics, antiviral drugs, and chemotherapeutic drugs). This review explores the mechanisms by which transporters mediate the entry and exit of toxicants from renal tubule cells and influence the degree of kidney injury. Delineating how transport proteins regulate the renal accumulation of toxicants is critical for understanding the likelihood of nephrotoxicity resulting from competition for excretion or genetic polymorphisms that affect transporter function.


Subject(s)
Kidney , Membrane Transport Proteins , Xenobiotics/pharmacokinetics , Animals , Carrier Proteins , Humans , Kidney/metabolism , Kidney/pathology
7.
Article in English | MEDLINE | ID: mdl-27818994

ABSTRACT

More than half of pregnant women use prescription medications in order to maintain both maternal and fetal health. The constitutive androstane receptor (Car) critically affects the disposition of chemicals by regulating the transcription of genes encoding metabolic enzymes and transporters. However, the effects of Car activation on chemical disposition during pregnancy are unclear. This study aims to determine the degree to which pregnancy alters the expression of drug metabolizing enzymes and transporters in response to the pharmacological activation of Car. To test this, pregnant C57BL/6 mice were administered IP doses of vehicle, or a potent Car agonist, TCPOBOP, on gestation days 14, 15 and 16. Hepatic mRNA and protein expression of Car target genes (phase I, II and transporters) were quantified on gestation day 17. Pregnancy-related changes, such as induction of Cyp2b10, Ugt1a1 and Sult1a1 and repression of Ugt1a6, Gsta1, Gsta2 and Mrp6, were observed. Interestingly, the induction of Cyp2b10, Gsta1, Gsta2 and Mrp2-4 mRNAs by TCPOBOP was attenuated in maternal livers suggesting that Car activation is impeded by the biochemical and/or physiological changes that occur during gestation. Taken together, these findings suggest that pregnancy and pharmacological activation of Car can differentially regulate the expression of drug metabolism and transport genes.

SELECTION OF CITATIONS
SEARCH DETAIL