Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Nat Cell Biol ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080411

ABSTRACT

Cyclic GMP-AMP synthase (cGAS), a cytosolic DNA sensor that initiates a STING-dependent innate immune response, binds tightly to chromatin, where its catalytic activity is inhibited; however, mechanisms underlying cGAS recruitment to chromatin and functions of chromatin-bound cGAS (ccGAS) remain unclear. Here we show that mTORC2-mediated phosphorylation of human cGAS serine 37 promotes its chromatin localization in colorectal cancer cells, regulating cell growth and drug resistance independently of STING. We discovered that ccGAS recruits the SWI/SNF complex at specific chromatin regions, modifying expression of genes linked to glutaminolysis and DNA replication. Although ccGAS depletion inhibited cell growth, it induced chemoresistance to fluorouracil treatment in vitro and in vivo. Moreover, blocking kidney-type glutaminase, a downstream ccGAS target, overcame chemoresistance caused by ccGAS loss. Thus, ccGAS coordinates colorectal cancer plasticity and acquired chemoresistance through epigenetic patterning. Targeting both mTORC2-ccGAS and glutaminase provides a promising strategy to eliminate quiescent resistant cancer cells.

2.
Appl Environ Microbiol ; 90(7): e0055724, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38953658

ABSTRACT

Klebsiella pneumoniae can enter a viable but nonculturable (VBNC) state to survive in unfavorable environments. Our research found that high-, medium-, and low-alcohol-producing K. pneumoniae strains are associated with nonalcoholic fatty liver disease. However, the presence of the three Kpn strains has not been reported in the VBNC state or during resuscitation. In this study, the effects of different strains, salt concentrations, oxygen concentrations, temperatures, and nutrients in K. pneumoniae VBNC state were evaluated. The results showed that high-alcohol-producing K. pneumoniae induced a slower VBNC state than medium-alcohol-producing K. pneumoniae, and low-alcohol-producing K. pneumoniae. A high-salt concentration and micro-oxygen environment accelerated the loss of culturability. Simultaneously, both real-time quantitative PCR and droplet digital PCR were developed to compare the quantitative comparison of three Kpn strain VBNC states by counting single-copy gene numbers. At 22°C or 37°C, the number of culturable cells decreased significantly from about 108 to 105-106 CFU/mL. In addition, imipenem, ciprofloxacin, polymyxin, and phiW14 inhibited cell resuscitation but could not kill VBNC-state cells. These results revealed that the different environments evaluated play different roles in the VBNC induction process, and new effective strategies for eliminating VBNC-state cells need to be further studied. These findings provide a better understanding of VBNC-state occurrence, maintenance, detection, and absolute quantification, as well as metabolic studies of resuscitation resistance and ethanol production.IMPORTANCEBacteria may enter VBNC state under different harsh environments. Pathogenic VBNC bacteria cells in clinical and environmental samples pose a potential threat to public health because cells cannot be found by routine culture. The alcohol-producing Kpn VBNC state was not reported, and the influencing factors were unknown. The formation and recovery of VBNC state is a complete bacterial escape process. We evaluated the influence of multiple induction conditions on the formation of VBNC state and recovery from antibiotic and bacteriophage inhibition, and established a sensitive molecular method to enumerate the VBNC cells single-copy gene. The method can improve the sensitivity of pathogen detection in clinical, food, and environmental contamination monitoring, and outbreak warning. The study of the formation and recovery of VBNC-state cells under different stress environments will also promote the microbiological research on the development, adaptation, and resuscitation in VBNC-state ecology.


Subject(s)
Klebsiella pneumoniae , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Microbial Viability/drug effects , Anti-Bacterial Agents/pharmacology , Temperature , Alcohols/metabolism , Alcohols/pharmacology
3.
Sci Rep ; 14(1): 14725, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926513

ABSTRACT

Viral infections pose significant public health challenges, exemplified by the global impact of COVID-19 caused by SARS-CoV-2. Understanding the intricate molecular mechanisms governing virus-host interactions is pivotal for effective intervention strategies. Despite the burgeoning multi-omics data on viral infections, a centralized database elucidating host responses to viruses remains lacking. In response, we have developed a comprehensive database named 'MOI' (available at http://www.fynn-guo.cn/ ), specifically designed to aggregate processed Multi-Omics data related to viral Infections. This meticulously curated database serves as a valuable resource for conducting detailed investigations into virus-host interactions. Leveraging high-throughput sequencing data and metadata from PubMed and Gene Expression Omnibus (GEO), MOI comprises over 3200 viral-infected samples, encompassing human and murine infections. Standardized processing pipelines ensure data integrity, including bulk RNA sequencing (RNA-seq), single-cell RNA-seq (scRNA-seq), Chromatin Immunoprecipitation sequencing (ChIP-seq), and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq). MOI offers user-friendly interfaces presenting comprehensive cell marker tables, gene expression data, and epigenetic landscape charts. Analytical tools for DNA sequence conversion, FPKM calculation, differential gene expression, and Gene Ontology (GO)/ Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment enhance data interpretation. Additionally, MOI provides 16 visualization plots for intuitive data exploration. In summary, MOI serves as a valuable repository for researchers investigating virus-host interactions. By centralizing and facilitating access to multi-omics data, MOI aims to advance our understanding of viral pathogenesis and expedite the development of therapeutic interventions.


Subject(s)
COVID-19 , Databases, Genetic , SARS-CoV-2 , Humans , Animals , Mice , COVID-19/genetics , COVID-19/virology , SARS-CoV-2/genetics , Virus Diseases/genetics , Virus Diseases/virology , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions/genetics , Chromatin Immunoprecipitation Sequencing , Multiomics
4.
Nat Chem Biol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773328

ABSTRACT

A timely inflammatory response is crucial for early viral defense, but uncontrolled inflammation harms the host. Retinoic acid-inducible gene I (RIG-I) has a pivotal role in detecting RNA viruses, yet the regulatory mechanisms governing its sensitivity remain elusive. Here we identify PTENα, an N-terminally extended form of PTEN, as an RNA-binding protein with a preference for the CAUC(G/U)UCAU motif. Using both in vivo and in vitro viral infection assays, we demonstrated that PTENα restricted the host innate immune response, relying on its RNA-binding capacity and phosphatase activity. Mechanistically, PTENα directly bound to viral RNA and enzymatically converted its 5'-triphosphate to 5'-monophosphate, thereby reducing RIG-I sensitivity. Physiologically, brain-intrinsic PTENα exerted protective effects against viral inflammation, while peripheral PTENα restricted host antiviral immunity and, to some extent, promoted viral replication. Collectively, our findings underscore the significance of PTENα in modulating viral RNA- and RIG-I-mediated immune recognition, offering potential therapeutic implications for infectious diseases.

5.
Front Immunol ; 15: 1294020, 2024.
Article in English | MEDLINE | ID: mdl-38646531

ABSTRACT

Endogenous retroviruses (ERVs) derived from the long terminal repeat (LTR) family of transposons constitute a significant portion of the mammalian genome, with origins tracing back to ancient viral infections. Despite comprising approximately 8% of the human genome, the specific role of ERVs in the pathogenesis of COVID-19 remains unclear. In this study, we conducted a genome-wide identification of ERVs in human peripheral blood mononuclear cells (hPBMCs) and primary lung epithelial cells from monkeys and mice, both infected and uninfected with SARS-CoV-2. We identified 405, 283, and 206 significantly up-regulated transposable elements (TEs) in hPBMCs, monkeys, and mice, respectively. This included 254, 119, 68, and 28 ERVs found in hPBMCs from severe and mild COVID-19 patients, monkeys, and transgenic mice expressing the human ACE2 receptor (hACE2) and infected with SARS-CoV-2. Furthermore, analysis using the Genomic Regions Enrichment of Annotations Tool (GREAT) revealed certain parental genomic sequences of these up-regulated ERVs in COVID-19 patients may be involved in various biological processes, including histone modification and viral replication. Of particular interest, we identified 210 ERVs specifically up-regulated in the severe COVID-19 group. The genes associated with these differentially expressed ERVs were enriched in processes such as immune response activation and histone modification. HERV1_I-int: ERV1:LTR and LTR7Y: ERV1:LTR were highlighted as potential biomarkers for evaluating the severity of COVID-19. Additionally, validation of our findings using RT-qPCR in Bone Marrow-Derived Macrophages (BMDMs) from mice infected by HSV-1 and VSV provided further support to our results. This study offers insights into the expression patterns and potential roles of ERVs following viral infection, providing a valuable resource for future studies on ERVs and their interaction with SARS-CoV-2.


Subject(s)
COVID-19 , Endogenous Retroviruses , SARS-CoV-2 , Endogenous Retroviruses/genetics , Animals , Humans , COVID-19/immunology , COVID-19/virology , COVID-19/genetics , SARS-CoV-2/physiology , SARS-CoV-2/immunology , Mice , Leukocytes, Mononuclear/virology , Leukocytes, Mononuclear/immunology , Mice, Transgenic , DNA Transposable Elements/genetics , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Lung/virology , Lung/immunology
6.
EMBO Rep ; 24(12): e57500, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37870259

ABSTRACT

SIRT2, a cytoplasmic member of the Sirtuin family, has important roles in immunity and inflammation. However, its function in regulating the response to DNA virus infection remains elusive. Here, we find that SIRT2 is a unique regulator among the Sirtuin family that negatively modulates the cGAS-STING-signaling pathway. SIRT2 is down-regulated after Herpes simplex virus-1 (HSV-1) infection, and SIRT2 deficiency markedly elevates the expression levels of type I interferon (IFN). SIRT2 inhibits the DNA binding ability and droplet formation of cGAS by interacting with and deacetylating G3BP1 at K257, K276, and K376, leading to the disassembly of the cGAS-G3BP1 complex, which is critical for cGAS activation. Administration of AGK2, a selective SIRT2 inhibitor, protects mice from HSV-1 infection and increases the expression of IFN and IFN-stimulated genes. Our study shows that SIRT2 negatively regulates cGAS activation through G3BP1 deacetylation, suggesting a potential antiviral strategy by modulating SIRT2 activity.


Subject(s)
DNA Helicases , Immunity, Innate , Animals , Mice , DNA Helicases/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , RNA Helicases/metabolism , RNA Recognition Motif Proteins/metabolism , Signal Transduction , Sirtuin 2/genetics , Sirtuin 2/metabolism
7.
Viruses ; 15(8)2023 08 18.
Article in English | MEDLINE | ID: mdl-37632103

ABSTRACT

OTUD6A is a deubiquitinase that plays crucial roles in various human diseases. However, the precise regulatory mechanism of OTUD6A remains unclear. In this study, we found that OTUD6A significantly inhibited the production of type I interferon. Consistently, peritoneal macrophages and bone marrow-derived macrophages from Otud6a-/- mice produced more type I interferon after virus infection compared to cells from WT mice. Otud6a-/-- mice also exhibited increased resistance to lethal HSV-1 and VSV infections, as well as LPS attacks due to decreased inflammatory responses. Mechanistically, mass spectrometry results revealed that UBC13 was an OTUD6A-interacting protein, and the interaction was significantly enhanced after HSV-1 stimulation. Taken together, our findings suggest that OTUD6A plays a crucial role in the innate immune response and may serve as a potential therapeutic target for infectious disease.


Subject(s)
Herpesvirus 1, Human , Interferon Type I , Humans , Animals , Mice , Immunity, Innate , Macrophages , Deubiquitinating Enzymes
8.
Sci Adv ; 9(33): eadg5211, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37595039

ABSTRACT

A rapid induction of antiviral genes is critical for eliminating viruses, which requires activated transcription factors and opened chromatins to initiate transcription. However, it remains elusive how the accessibility of specific chromatin is regulated during infection. Here, we found that XAF1 functioned as an epigenetic regulator that liberated repressed chromatin after infection. Upon RNA virus infection, MAVS recruited XAF1 and TBK1. TBK1 phosphorylated XAF1 at serine-252 and promoted its nuclear translocation. XAF1 then interacted with TRIM28 with the guidance of IRF1 to the specific locus of antiviral genes. XAF1 de-SUMOylated TRIM28 through its PHD domain, which led to increased accessibility of the chromatin and robust induction of antiviral genes. XAF1-deficient mice were susceptible to RNA virus due to impaired induction of antiviral genes. Together, XAF1 acts as an epigenetic regulator that promotes the opening of chromatin and activation of antiviral immunity by targeting TRIM28 during infection.


Subject(s)
Chromatin , RNA Virus Infections , Animals , Mice , Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins , Chromatin/genetics , Epigenomics , Immunity , RNA , RNA Virus Infections/immunology
9.
Adv Sci (Weinh) ; 10(30): e2303207, 2023 10.
Article in English | MEDLINE | ID: mdl-37639212

ABSTRACT

Tissue-infiltrating neutrophils (TINs) secrete various signaling molecules to establish paracrine communication within the inflammatory milieu. It is imperative to identify molecular mediators that control this secretory phenotype of TINs. The present study uncovers a secretory neutrophil subset that exhibits increased pro-inflammatory cytokine production and enhanced migratory capacity which is highly related with periodontal pathogenesis. Further analysis identifies the OTU domain-containing protein 1 (OTUD1) plays a regulatory role in this secretory neutrophil polarization. In human and mouse periodontitis, the waning of inflammation is correlated with OTUD1 upregulation, whereas severe periodontitis is induced when neutrophil-intrinsic OTUD1 is depleted. Mechanistically, OTUD1 interacts with SEC23B, a component of the coat protein II complex (COPII). By removing the K63-linked polyubiquitin chains on SEC23B Lysine 81, the deubiquitinase OTUD1 negatively regulates the COPII secretory machinery and limits protein ER-to-Golgi trafficking, thus restricting the surface expression of integrin-regulated proteins, CD9 and CD47. Accordingly, blockade of protein transport by Brefeldin A (BFA) curbs recruitment of Otud1-deficient TINs and attenuates inflammation-induced alveolar bone destruction. The results thus identify OTUD1 signaling as a negative feedback loop that limits the polarization of neutrophils with secretory phenotype and highlight the potential application of BFA in the treatment of periodontal inflammation.


Subject(s)
Neutrophils , Periodontitis , Animals , Humans , Mice , Deubiquitinating Enzymes , Inflammation , Neutrophils/metabolism , Protein Transport , Ubiquitin-Specific Proteases/metabolism
10.
Microorganisms ; 11(7)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37512829

ABSTRACT

Staphylococcus aureus is an opportunistic human pathogen that is often involved in severe infections such as pneumonia and sepsis in which bacterial virulence factors play a key role. Infections caused by S. aureus are often difficult to eradicate, particularly when they are associated with biofilm. The physiological roles of the Crp/Fnr family regulator ArcR are elusive in S. aureus. In this study, it was found that the deletion of arcR increased the hemolytic ability and biofilm formation in S. aureus. Differential gene expression analysis by RNA-seq and real-time quantitative reverse transcription PCR showed that genes associated with hemolytic ability (hla and hlb) and biofilm formation (icaA, icaB, icaC and icaD) were significantly upregulated compared with those in the wild-type strain. The results revealed that ArcR regulated the expression of the hla and ica operon by binding to their promoter regions, respectively. This study provided new insights into the functional importance of ArcR in regulating the virulence and biofilm of S. aureus.

11.
BMC Med ; 21(1): 147, 2023 04 17.
Article in English | MEDLINE | ID: mdl-37069550

ABSTRACT

BACKGROUND: Tyrosine kinase inhibitors (TKIs) are anti-cancer therapeutics often prescribed for long-term treatment. Many of these treatments cause cardiotoxicity with limited cure. We aim to clarify molecular mechanisms of TKI-induced cardiotoxicity so as to find potential targets for treating the adverse cardiac complications. METHODS: Eight TKIs with different levels of cardiotoxicity reported are selected. Phenotypic and transcriptomic responses of human cardiomyocytes to TKIs at varying doses and times are profiled and analyzed. Stress responses and signaling pathways that modulate cardiotoxicity induced by three TKIs are validated in cardiomyocytes and rat hearts. RESULTS: Toxicity rank of the eight TKIs determined by measuring their effects on cell viability, contractility, and respiration is largely consistent with that derived from database or literature, indicating that human cardiomyocytes are a good cellular model for studying cardiotoxicity. When transcriptomes are measured for selected TKI treatments with different levels of toxicity in human cardiomyocytes, the data are classified into 7 clusters with mainly single-drug clusters. Drug-specific effects on the transcriptome dominate over dose-, time- or toxicity-dependent effects. Two clusters with three TKIs (afatinib, ponatinib, and sorafenib) have the top enriched pathway as the endoplasmic reticulum stress (ERS). All three TKIs induce ERS in rat primary cardiomyocytes and ponatinib activates the IRE1α-XBP1s axis downstream of ERS in the hearts of rats underwent a 7-day course of drug treatment. To look for potential triggers of ERS, we find that the three TKIs induce transient reactive oxygen species followed by lipid peroxidation. Inhibiting either PERK or IRE1α downstream of ERS blocks TKI-induced cardiac damages, represented by the induction of cardiac fetal and pro-inflammatory genes without causing more cell death. CONCLUSIONS: Our data contain rich information about phenotypic and transcriptional responses of human cardiomyocytes to eight TKIs, uncovering potential molecular mechanisms in modulating cardiotoxicity. ER stress is activated by multiple TKIs and leads to cardiotoxicity through promoting expression of pro-inflammatory factors and cardiac fetal genes. ER stress-induced inflammation is a promising therapeutic target to mitigate ponatinib- and sorafenib-induced cardiotoxicity.


Subject(s)
Myocytes, Cardiac , Protein Serine-Threonine Kinases , Humans , Rats , Animals , Myocytes, Cardiac/metabolism , Protein Serine-Threonine Kinases/metabolism , Cardiotoxicity/etiology , Sorafenib/metabolism , Sorafenib/pharmacology , Endoribonucleases/metabolism , Endoribonucleases/pharmacology , Apoptosis , Endoplasmic Reticulum Stress/physiology
12.
J Nanobiotechnology ; 21(1): 78, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36879291

ABSTRACT

Plant-derived nanovesicles (PDNVs) have been proposed as a major mechanism for the inter-kingdom interaction and communication, but the effector components enclosed in the vesicles and the mechanisms involved are largely unknown. The plant Artemisia annua is known as an anti-malaria agent that also exhibits a wide range of biological activities including the immunoregulatory and anti-tumor properties with the mechanisms to be further addressed. Here, we isolated and purified the exosome-like particles from A. annua, which were characterized by nano-scaled and membrane-bound shape and hence termed artemisia-derived nanovesicles (ADNVs). Remarkably, the vesicles demonstrated to inhibit tumor growth and boost anti-tumor immunity in a mouse model of lung cancer, primarily through remolding the tumor microenvironment and reprogramming tumor-associated macrophages (TAMs). We identified plant-derived mitochondrial DNA (mtDNA), upon internalized into TAMs via the vesicles, as a major effector molecule to induce the cGAS-STING pathway driving the shift of pro-tumor macrophages to anti-tumor phenotype. Furthermore, our data showed that administration of ADNVs greatly improved the efficacy of PD-L1 inhibitor, a prototypic immune checkpoint inhibitor, in tumor-bearing mice. Together, the present study, for the first time, to our knowledge, unravels an inter-kingdom interaction wherein the medical plant-derived mtDNA, via the nanovesicles, induces the immunostimulatory signaling in mammalian immune cells for resetting anti-tumor immunity and promoting tumor eradication.


Subject(s)
DNA, Mitochondrial , Plants, Medicinal , Animals , Mice , Immune Checkpoint Inhibitors , Mammals , Mitochondria , Nucleotidyltransferases , Tumor-Associated Macrophages
13.
Front Endocrinol (Lausanne) ; 14: 1140804, 2023.
Article in English | MEDLINE | ID: mdl-36967768

ABSTRACT

Introduction: The increased prevalence of non-alcoholic fatty liver disease (NAFLD) and sarcopenia among the elderly are facing a significant challenge to the world's health systems. Our study aims to identify the coexpressed genes in NAFLD and sarcopenia patients. Methods: We downloaded the transcriptome data of NAFLD tissue from patients, as well as muscle tissues from sarcopenia patients, from the GEO database in order to investigate the shared transcriptional regulation mechanisms between these two diseases. Then, focusing on the genes that were frequently expressed in these diseases, together with GSVA and WGCNA, we utilized a range of analysis methods to identify the main co-expressed genes in both diseases by taking intersections. We investigated these changes after learning that they mostly affected lipid metabolism and oxidative stress injury pathways. Results: By analyzing these genes and their interactions with transcription factors and proteins, we were able to identify 8 genes that share common patterns. From these 8 genes, we were possible to forecast potential future medicines. Our research raises the possibility of NAFLD and sarcopenia transcriptome regulatory pathways in aging populations. Discussion: In conclusion, a complete transcription pattern mapping was carried out in order to identify the core genes, underlying biological mechanisms, and possible therapeutic targets that regulate aging in NAFLD and sarcopenia patients. It provides novel insights and proof in favor of decreasing the increased prevalence of sarcopenia in the elderly caused by NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Sarcopenia , Humans , Aged , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/epidemiology , Sarcopenia/genetics , Sarcopenia/epidemiology , Transcriptome , Aging , Gene Expression Profiling
14.
Genome Biol ; 24(1): 20, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36726140

ABSTRACT

BACKGROUND: The CRISPR-Cas13 system is an RNA-guided RNA-targeting system and has been widely used in transcriptome engineering with potentially important clinical applications. However, it is still controversial whether Cas13 exhibits collateral activity in mammalian cells. RESULTS: Here, we find that knocking down gene expression using RfxCas13d in the adult brain neurons caused death of mice, which may result from the collateral activity of RfxCas13d rather than the loss of target gene function or off-target effects. Mechanistically, we show that RfxCas13d exhibits collateral activity in mammalian cells, which is positively correlated with the abundance of target RNA. The collateral activity of RfxCas13d could cleave 28s rRNA into two fragments, leading to translation attenuation and activation of the ZAKα-JNK/p38-immediate early gene pathway. CONCLUSIONS: These findings provide new mechanistic insights into the collateral activity of RfxCas13d in mammalian cells and warn that the biosafety of the CRISPR-Cas13 system needs further evaluation before application to clinical treatments.


Subject(s)
CRISPR-Cas Systems , RNA , Animals , Mice , MAP Kinase Signaling System , RNA/genetics , Transcriptome
15.
J Agric Food Chem ; 70(39): 12535-12549, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36153996

ABSTRACT

Polymeric nanomaterials (APs) are gaining attention as promising clinical antimicrobials with rapidly increasing antibiotic resistance. Infections by zoonotic enterohemorrhagic Escherichia coli are a severe global threat to public health. Chitosan nanoparticles-microcin J25 (CNM), a class of APs engineered by bioactive peptides and chitosan nanoparticles, can be used as a novel antimicrobial agent against bacterial infections. However, the risk assessment of CNM on animal health or its potential immune modulation to treat serotype E. coli O157:H7 infection impacts in vivo are not well understood. Herein, our findings in mouse models uncovered that oral administration of low levels of CNM significantly increased the body weight and made beneficial effects on the lifespan or clinical signs, accompanied by a significant improvement in gut health, including enhancing the intestinal barrier, immune modulation, and changes in gut microbiota compositions or metabolites. However, high concentrations of CNM induced serious adverse effects, negatively improving intestinal health targets. Anti-infective results proved that oral 0.1% CNM enhances host defense against E. coli O157:H7 infection by improving immune functions and modulating the Th1/Th2 balance. In summary, these findings uncover an instrumental link between the dosage and toxicity risk, suggesting that APs need to be comprehensively assessed for risk before application as safe and reliable food preservatives or therapeutic agents. In addition, CNM as a promising AP may markedly enhance host immunity and therapeutic effects by oral administration.


Subject(s)
Anti-Infective Agents , Chitosan , Escherichia coli Infections , Escherichia coli O157 , Nanoparticles , Animals , Anti-Infective Agents/pharmacology , Antimicrobial Peptides , Chitosan/chemistry , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Food Preservatives/pharmacology , Mice , Nanoparticles/chemistry , Risk Assessment
16.
PLoS Pathog ; 18(6): e1010599, 2022 06.
Article in English | MEDLINE | ID: mdl-35658050

ABSTRACT

Regulation of chromatin structure and accessibility determines the transcription activities of genes, which endows the host with function-specific patterns of gene expression. Upon viral infection, the innate immune responses provide the first line of defense, allowing rapid production of variegated antiviral cytokines. Knowledge on how chromatin accessibility is regulated during host defense against viral infection remains limited. Our previous work found that the nuclear matrix protein SAFA surveilled viral RNA and regulated antiviral immune genes expression. However, how SAFA regulates the specific induction of antiviral immune genes remains unknown. Here, through integration of RNA-seq, ATAC-seq and ChIP-seq assays, we found that the depletion of SAFA specifically decreased the chromatin accessibility, activation and expression of virus induced genes. And mutation assays suggested that the RNA-binding ability of SAFA was essential for its function in regulating antiviral chromatin accessibility. RIP-seq results showed that SAFA exclusively bound with antiviral related RNAs following viral infection. Further, we combined the CRISPR-Cas13d mediated RNA knockdown system with ATAC-qPCR, and demonstrated that the binding between SAFA and according antiviral RNAs specifically mediated the openness of the corresponding chromatin and following robust transcription of antiviral genes. Moreover, knockdown of these associated RNAs dampened the accessibility of related genes in an extranuclear signaling pathway dependent manner. Interestingly, VSV infection cleaved SAFA protein at the C-terminus which deprived its RNA binding ability for immune evasion. Thus, our results demonstrated that SAFA and the interacting RNA products collaborated and remodeled chromatin accessibility to facilitate antiviral innate immune responses.


Subject(s)
Antiviral Agents , Virus Diseases , Chromatin/genetics , Host-Pathogen Interactions/genetics , Humans , Immunity, Innate/genetics , RNA, Viral
17.
Nat Nanotechnol ; 17(7): 788-798, 2022 07.
Article in English | MEDLINE | ID: mdl-35606443

ABSTRACT

Pyroptosis is a gasdermin-mediated programmed necrosis that occurs via membrane perforation and that can be exploited for biomedical applications in cancer therapy. However, inducing specific pyroptotic cancer cell death while sparing normal cells is challenging. Here, we report an acid-activatable nanophotosensitizer library that can be used to spatiotemporally target distinct stages of endosomal maturation, enabling tunable cellular pyroptosis. Specific activation of phospholipase C signalling transduction in early endosomes triggers gasdermin-E-mediated pyroptosis, which is dramatically reduced when acid-activatable nanophotosensitizers are transported into late endosomes/lysosomes. This nanotuner platform induces pyroptotic cell death with up to 40-fold tunability in various gasdermin-E-positive human cancers, resulting in enhanced anti-tumour efficacy and minimized systemic side effects. This study offers new insights into how to engineer nanomedicines with tunable pyroptosis activity through specific targeting of distinct endocytic signalling for biomedical applications.


Subject(s)
Neoplasms , Pyroptosis , Apoptosis , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Neoplasm Proteins/metabolism , Neoplasms/drug therapy , Phosphate-Binding Proteins
18.
Int J Mol Sci ; 23(9)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35563234

ABSTRACT

Alcohol liver disease (ALD) is characterized by intestinal barrier disruption and gut dysbiosis. Dysfunction of E74-like ETS transcription factor 4 (ELF4) leads to colitis. We aimed to test the hypothesis that intestinal ELF4 plays a critical role in maintaining the normal function of intestinal barrier and gut homeostasis in a mouse model of ALD. Intestinal ELF4 deficiency resulted in dysfunction of the intestinal barrier. Elf4-/- mice exhibited gut microbiota (GM) dysbiosis with the characteristic of a larger proportion of Proteobacteria. The LPS increased in Elf4-/- mice and was the most important differential metabolite between Elf4-/- mice and WT mice. Alcohol exposure increased liver-to-body weight ratio, and hepatic inflammation response and steatosis in WT mice. These deleterious effects were exaggerated in Elf4-/- mice. Alcohol exposure significantly increased serum levels of TG, ALT, and AST in Elf4-/- mice but not in WT mice. In addition, alcohol exposure resulted in enriched expression of genes associated with cholesterol metabolism and lipid metabolism in livers from Elf4-/- mice. 16S rRNA sequencing showed a decrease abundance of Akkermansia and Bilophila in Elf4-/- mice. In conclusion, intestinal ELF4 is an important host protective factor in maintaining gut homeostasis and alleviating alcohol exposure-induced hepatic steatosis and injury.


Subject(s)
Fatty Liver, Alcoholic , Liver Diseases, Alcoholic , Animals , Dysbiosis/metabolism , Ethanol/metabolism , Ethanol/toxicity , Fatty Liver, Alcoholic/metabolism , Homeostasis , Liver/metabolism , Liver Diseases, Alcoholic/genetics , Liver Diseases, Alcoholic/metabolism , Mice , Mice, Inbred C57BL , RNA, Ribosomal, 16S/genetics
19.
J Clin Immunol ; 42(4): 798-810, 2022 05.
Article in English | MEDLINE | ID: mdl-35266071

ABSTRACT

Monogenic autoinflammatory diseases (mAIDs) are a heterogeneous group of diseases affecting primarily innate immunity, with various genetic causes. Genetic diagnosis of mAIDs can assist in the patient's management and therapy. However, a large number of sporadic and familial cases remain genetically uncharacterized. Deficiency in ELF4, X-linked (DEX) is recently identified as a novel mAID. Here, we described a pediatric patient suffering from recurrent viral and bacterial respiratory infection, refractory oral ulcer, constipation, and arthritis. Whole-exome sequencing found a hemizygous variant in ELF4 (chrX:129205133 A > G, c.691 T > C, p.W231R). Using cells from patient and point mutation mice, we showed mutant cells failed to restrict viral replication effectively and produced more pro-inflammatory cytokines. RNA-seq identified several potential critical antiviral and anti-inflammation genes with decreased expression, and ChIP-qPCR assay suggested mutant ELF4 failed to bind to the promoters of these genes. Thus, we presented the second report of DEX.


Subject(s)
Hereditary Autoinflammatory Diseases , Immunologic Deficiency Syndromes , Murine Acquired Immunodeficiency Syndrome , Animals , Child , DNA-Binding Proteins/genetics , Hereditary Autoinflammatory Diseases/diagnosis , Hereditary Autoinflammatory Diseases/genetics , Humans , Immunologic Deficiency Syndromes/diagnosis , Immunologic Deficiency Syndromes/genetics , Loss of Function Mutation , Mice , Mutation/genetics , Transcription Factors/genetics , Exome Sequencing
20.
Adv Mater ; 34(18): e2109580, 2022 May.
Article in English | MEDLINE | ID: mdl-35229371

ABSTRACT

Lipid-membrane-targeting strategies hold great promise to develop broad-spectrum antivirals. However, it remains a big challenge to identify novel membrane-based targets of viruses and virus-infected cells for development of precision targeted approaches. Here, it is discovered that viroporins, viral-encoded ion channels, which have been reported to mediate release of hydrogen ions, trigger membrane acidification of virus-infected cells. Through development of a fine-scale library of gradient pH-sensitive (GPS) polymeric nanoprobes, the cellular membrane pH transitions are measured from pH 6.8-7.1 (uninfection) to pH 6.5-6.8 (virus-infection). In response to the subtle pH alterations, the GPS polymer with sharp response at pH 6.8 (GPS6.8 ) selectively binds to virus-infected cell membranes or the viral envelope, and even completely disrupts the viral envelope. Accordingly, GPS6.8 treatment exerts suppressive effects on a wide variety of viruses including SARS-CoV-2 through triggering viral-envelope lysis rather than affecting immune pathway or viability of host cells. Murine viral-infection models exhibit that supplementation of GPS6.8 decreases viral titers and ameliorates inflammatory damage. Thus, the gradient pH-sensitive nanotechnology offers a promising strategy for accurate detection of biological pH environments and robust interference with viruses.


Subject(s)
COVID-19 , Viruses , Animals , Antiviral Agents/pharmacology , Hydrogen-Ion Concentration , Mice , Polymers/pharmacology , SARS-CoV-2 , Viroporin Proteins , Viruses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL