Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 192
1.
Talanta ; 275: 126172, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38692050

Nanoparticles (NPs) could be uptake orally and exposed to digestive tract through various sources such as particulate pollutant, nanomedicine and food additive. Inflammatory bowel disease (IBD), as a global disease, induced disruption of the intestinal mucosal barrier and thus altered in vivo distribution of NPs as a possible consequence. However, related information was relatively scarce. Herein, in vivo distribution of typical silica (SiO2) and titania (TiO2) NPs was investigated in healthy and IBD models at cell and animal levels via a surface-enhanced Raman scattering (SERS) tag labeling technique. The labeled NPs were composed of gold SERS tag core and SiO2 (or TiO2) shell, demonstrating sensitive and characteristic SERS signals ideal to trace the NPs in vivo. Cell SERS mapping revealed that protein corona from IBD intestinal fluid decreased uptake of NPs by lipopolysaccharide-induced RAW264.7 cells compared with normal intestinal fluid protein corona. SERS signal detection combined with inductively coupled plasma mass spectrometry (ICP-MS) analysis of mouse tissues (heart, liver, spleen, lung and kidney) indicated that both NPs tended to accumulate in lung specifically after oral administration for IBD mouse (6 out of 20 mice for SiO2 and 4 out of 16 mice for TiO2 were detected in lung). Comparatively, no NP signals were detected in all tissues from healthy mice. These findings suggested that there might be a greater risk associated with the oral uptake of NPs in IBD patients due to altered in vivo distribution of NPs.


Inflammatory Bowel Diseases , Silicon Dioxide , Spectrum Analysis, Raman , Titanium , Animals , Spectrum Analysis, Raman/methods , Mice , Titanium/chemistry , Silicon Dioxide/chemistry , RAW 264.7 Cells , Inflammatory Bowel Diseases/metabolism , Administration, Oral , Nanoparticles/chemistry , Tissue Distribution , Metal Nanoparticles/chemistry , Gold/chemistry , Male , Protein Corona/chemistry , Protein Corona/analysis , Protein Corona/metabolism
2.
J Chromatogr A ; 1722: 464866, 2024 May 10.
Article En | MEDLINE | ID: mdl-38581976

The detection of aromatic aldehydes, considered potential genotoxic impurities, holds significant importance during drug development and production. Current analytical methods necessitate complex pre-treatment processes and exhibit insufficient specificity and sensitivity. This study presents the utilization of naphthalenediimide as a pre-column derivatisation reagent to detect aromatic aldehyde impurities in pharmaceuticals via high-performance liquid chromatography (HPLC). We screened a series of derivatisation reagents through density functional theory (DFT) and investigated the phenomenon of photoinduced electron transfer (PET) for both the derivatisation reagents and the resulting products. Optimal experimental conditions for derivatisation were achieved at 40 °C for 60 min. This approach has been successfully applied to detect residual aromatic aldehyde genotoxic impurities in various pharmaceutical preparations, including 4-Nitrobenzaldehyde, 2-Nitrobenzaldehyde, 1,4-Benzodioxane-6-aldehyde, and 5-Hydroxymethylfurfural. The pre-column derivatisation method significantly enhanced detection sensitivity and reduced the limit of detection (LOD), which ranged from 0.002 to 0.008 µg/ml for the analytes, with relative standard deviations < 3 %. The correlation coefficient (R2) >0.998 demonstrated high quality. In chloramphenicol eye drops, the concentration of 4-Nitrobenzaldehyde was measured to be 8.6 µg/mL below the specified concentration, with recoveries ranging from 90.0 % to 119.2 %. In comparison to existing methods, our work simplifies the pretreatment process, enhances the sensitivity and specificity of the analysis, and offers comprehensive insights into impurity detection in pharmaceutical preparations.


Aldehydes , Drug Contamination , Imides , Limit of Detection , Naphthalenes , Chromatography, High Pressure Liquid/methods , Naphthalenes/chemistry , Naphthalenes/analysis , Aldehydes/analysis , Aldehydes/chemistry , Imides/chemistry , Mutagens/analysis , Mutagens/chemistry , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/analysis , Benzaldehydes/chemistry , Benzaldehydes/analysis
3.
J Fluoresc ; 34(1): 425-436, 2024 Jan.
Article En | MEDLINE | ID: mdl-37284963

A novel reagent named 4-(N-methyl-1,3-dioxo-benzoisoquinolin-6-yl-oxy)benzene sulfonyl chloride (MBIOBS-Cl) for the determination of estrogens in food samples by high-performance liquid chromatography (HPLC) with fluorescence detection has been developed. Estrogens could be easily labeled by MBIOBS-Cl in Na2CO3-NaHCO3 buffer solution at pH 10.0. The complete labeling reaction for estrogens could be accomplished within five minutes, the corresponding derivatives exhibited strong fluorescence with the maximum excitation and emission wavelengths at 249 nm and 443 nm, respectively. The derivatization conditions, such as the molar ratio of reagent to estrogens, derivatization time, pH, temperature, and buffers were optimized. Derivatives were sufficiently stable to be efficiently analyzed by HPLC with a reversed-phase Agilent ZORBAX 300SB-C18 column with a good baseline resolution. Excellent linear correlations were obtained for all estrogen derivatives with correlation coefficients greater than 0.9998. Ultrasonic-Assisted extraction was used to optimize the extraction of estrogens from meat samples with a recovery higher than 82%. The detection limits (LOD, S/N = 3) of the method ranged from 0.95 to 3.3 µg· kg-1. The established method, which is fast, simple, inexpensive, and environment friendly, can be successfully applied for the detection of four steroidal estrogens from meat samples with little matrix interference.


Estrogens , Meat , Estrogens/analysis , Chromatography, High Pressure Liquid/methods , Meat/analysis
4.
Anal Chem ; 95(46): 17089-17098, 2023 11 21.
Article En | MEDLINE | ID: mdl-37940603

Molecular diffusion and leakage impede the long-term retention of probes/drugs and may cause potential adverse effects in theranostic fields. Spatiotemporally manipulating the organelle-immobilization behavior of probes/drugs for prolonged tumor retention is indispensable to achieving effective cancer diagnosis and therapy. Herein, we propose a rational strategy that could realize near-infrared light-activated ribonucleic acids (RNAs) cross-linking for prolonged tumor retention and simultaneously endogenous hydrogen sulfide (H2S) monitoring in colorectal tumors. Profiting from efficient singlet oxygen (1O2) generation from Cy796 under 808 nm light irradiation, the 1O2-animated furan moiety in Cy796 could covalently cross-link with cytoplasmic RNAs via a cycloaddition reaction and realize organelle immobilization. Subsequently, specific thiolysis of Cy796 assisted with H2S resulted in homologous product Cy644 with reduced 1O2 generation yields and enhanced absolute fluorescence quantum yields (from 7.42 to 27.70%) with blue-shifted absorption and emission, which avoided the molecular oxidation fluorescence quenching effect mediated by 1O2 and validated fluorescence imaging. Furthermore, studies have demonstrated that our proposed strategy possessed adequate capacity for fluorescence imaging and endogenous H2S detection in HCT116 cells, particularly accumulated at the tumor sites, and retained long-term imaging with excellent biocompatibility. The turn-on fluorescence mode and turn-off 1O2 generation efficiency in our strategy successfully realized a diminished fluorescence cross-talk and oxidation quenching effect. It is adequately envisioned that our proposed strategy for monitoring biomarkers and prolonged tumor retention will contribute tremendous dedication in the clinical, diagnostic, and therapeutic fields.


Colorectal Neoplasms , Hydrogen Sulfide , Humans , RNA, Mitochondrial , Fluorescent Dyes , Colorectal Neoplasms/diagnostic imaging , Optical Imaging/methods
5.
Biosens Bioelectron ; 237: 115485, 2023 Oct 01.
Article En | MEDLINE | ID: mdl-37348191

The photoconvertible fluorophore synthesis enables the light controlled imaging channels switch for accurate tracking the quantity and localization of intracellular biomolecules in chemical biology. Herein, we repurposed the photochemistry of Fischer's base and developed a sunlight-directed fluorophore-switch strategy for high-efficiency trimethine cyanine (Cy3.5/Cy3) synthesis. The unexpected sunlight-directed photoconversion of Fischer's base proceeds in conventional solvents and accelerates in chloroform via photo-oxidation and hydrogen atom transfer without using extra additives, and the heterogenous dimerization mechanism was proposed and confirmed by isolation of the reactive intermediates. The reliable strategy is employed in the photosynthesis of commercially available cytomembrane marker (DiI) and other cyanine based organelle markers with appreciable yields. Sunlight-controlled fluorophore-switch of subcellular organelle markers in living cells validated the feasibility of our strategy with cell-tolerant character. Moreover, remote control synthesis of Cy3.5 in vivo directed via sunlight further demonstrated the extended application of our strategy. Therefore, this sunlight-directed strategy will facilitate exploitation of cyanine-based probes with switched fluorescence imaging channels and further enable precise description of the dynamic variations in living cells with minimal autofluorescence and cellular disturbance.


Organelles , Sunlight , Humans , Animals , Mice , Cell Line, Tumor , Fluorescent Dyes/chemistry , Organelles/chemistry , Photochemistry/methods , Photosynthesis , Cyanates/chemistry
6.
Anal Chem ; 2023 Jan 11.
Article En | MEDLINE | ID: mdl-36629754

Programmed cell death (PCD) is a precisely controlled physiological process to sustain tissue homeostasis. Even though the PCD pathways have been explicitly subdivided, the individual cell death process seems to synergistically operate to eliminate cells rather than separately execute signal transduction. Apoptosis is the dominant intracellular PCD subtype, which is intimately regulated and controlled by mitochondria, thus tracing mitochondrial actions could reveal the dynamic changes of apoptosis, which may provide important tools for screening preclinical therapeutic agents. Herein, we exploited an innovative fluorophore Cy496 based on the light-initiated cleavage reaction. Cy496 bears the typical D-π-A structure and serves as a versatile building block for chemosensor construction through flexible side chains. By regulating lipophilicity and basicity through bis-site substitution, we synthesized a series of fluorescence probes and screened a novel mitochondria-targeted ratiometric probe Cy1321, which can real-time evaluate the dynamic changes of mitochondrial micropolarity mediated by bis-cholesterol anchoring. Cy1321 has realized two-color quantification and real-time visualization of polarity fluctuations on chemotherapy agent (cisplatin)-induced apoptosis through flow cytometry and confocal imaging and also achieved the purpose of detecting mitochondria-related apoptosis at the level of tissues. It is envisioned that Cy1321 has sufficient capability as a promising and facile tool for the evaluation of apoptosis and contributing to therapeutic drug screening.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 286: 121965, 2023 Feb 05.
Article En | MEDLINE | ID: mdl-36265300

Mercury ion, as a metal cation with great toxic effect, is widely present in various production and living environments. It seriously threatens human health and environmental safety. It is of great significance to develop convenient and effective methods for mercury ion detection. Here, we designed and synthesized a new ratiometric fluorescent probe (namely APS-NA) for the detection of mercury ions in the environment and multiple biological samples. The probe is constructed by covalently connecting two fluorophores with lipolic acid to achieve fluorescence resonance energy transfer (FRET). In the molecular structure of APS-NA, acridone is used as an energy donor, 1,8-naphthalimide is used as an energy acceptor, and a dithioacetal group is used as the reaction site for Hg2+. The intact APS-NA mainly shows the green fluorescence from the acceptor moiety 1,8-naphthalimide; the presence of Hg2+ ions would break the dithioacetal linkage between acridone and 1,8-naphthalimide; the defunctionalization of FRET would lead to bright blue fluorescence emission of acridone; thus ratiometric fluorescent detection of Hg2+ can be achieved by this recognition process. The probe not only has a large Stokes shift (Δλ = 110 nm), but also has high selectivity, high sensitivity (low detection limit 30 nM) and naked eye visualization. In addition, we have successfully used this probe for the detection Hg2+ of actual samples and imaging of a variety of organisms. These results indicate that the probe has broad application prospects.


Fluorescence Resonance Energy Transfer , Mercury , Humans , Fluorescence Resonance Energy Transfer/methods , Fluorescent Dyes/chemistry , Naphthalimides/chemistry , Mercury/chemistry , Water/chemistry , Acridones , Ions
8.
J Hazard Mater ; 441: 129889, 2023 01 05.
Article En | MEDLINE | ID: mdl-36087533

Detection of heavy metal ions has drawn significant attention in environmental and food area due to their threats to the human health and ecosystem. Colorimetry is one of the most frequently-used methods for the detection of heavy metal ions owing to its simplicity, easy operation and rapid on-site detection. The development of chromogenic materials and their sensing mechanisms are the key research direction in the area of colorimetric method. Since each chromogenic material has their unique optical and chemical properties, they have totally different colorimetric sensing mechanisms. This review focuses on the chromogenic materials and their sensing strategies for the colorimetric detection of heavy metal ions. We divide the chromogenic materials into three types, including organic materials, inorganic materials, and other materials. As for each type of chromogenic material, we discuss their detailed sensing strategies, sensing performance, and real sample applications. Moreover, current challenges and perspectives related to the colorimetry of heavy metal ions are also discussed in this review. The aim of this review is to help readers to better understand the principles of colorimetric methods for heavy metal ions and push the development of rapid detection of heavy metal ions.


Colorimetry , Metals, Heavy , Colorimetry/methods , Ecosystem , Humans , Ions , Metals, Heavy/chemistry
9.
Analyst ; 147(16): 3675-3683, 2022 Aug 08.
Article En | MEDLINE | ID: mdl-35852237

Studies have shown that homocysteine (Hcy) levels are closely related to cardiovascular and cerebrovascular diseases. In this work, we have developed and synthesized three copper complexes, F542-Cu2+, F508-Cu2+, and F465-Cu2+ for Hcy detection. The different binding constants (Ks) of the copper complexes endow them with dramatic reactivity toward biothiols. The pyridine-containing tetraazacycle was employed in the construction of F542-Cu2+, which renders the medium Ks value for the copper complex compared with cyclen and TACN and effectively prevented the disintegration of the complexes. Pyridine-containing tetraazacycle provided the basis and possibility for the hypothesis for the reduction of Cu2+ by biothiols to shape into a stable six-membered ring structure. The obtained results verified that F542-Cu2+ could be utilized to specifically probe Hcy in a switched-on fluorescence mode. F542-Cu2+ exhibited excellent environmental stability, superior sensitivity, and outstanding selectivity toward Hcy under physiological conditions. The mechanism of Hcy specificity was confirmed to be related to the generation of Hcy-induced six-membered ring by fluorescence imaging, time-dependent fluorescence spectra, ESI-MS, and electron paramagnetic resonance (EPR) analyses. Furthermore, we exploited the application of F542-Cu2+ and developed a strategy for evaluating the activity of S-adenosylhomocysteine hydrolase (AHCY) in vitro by fluorescence analysis. More importantly, real-time in vivo evaluation of the enzymatic activity of AHCY was realized and assisted by our probe, providing the possibility of opening up a new avenue for enzymatic reaction assessment.


Copper , Homocysteine , Adenosylhomocysteinase , Copper/chemistry , Cysteine/analysis , Fluorescent Dyes/chemistry , Optical Imaging , Pyridines
10.
RSC Adv ; 12(25): 15910-15917, 2022 May 23.
Article En | MEDLINE | ID: mdl-35733690

Considering the pivotal role of biomarkers in plasma, the development of biomarker specific sensing platforms is of great significance to achieve accurate diagnosis and monitor the occurrence and progress in acute kidney injury (AKI). In this paper, we develop a promising surface-enhanced Raman scattering-based aptasensor for duplex detection of two protein biomarkers in AKI. Exploiting the base-pairing specificity of nucleic acids to form a Y-shaped self-assembled aptasensor, the MGITC labelled gold nanoparticles will be attached to the surface of magnetic beads. In the presence of specific AKI-related biomarkers, the gold nanoparticles will detach from magnetic beads into the supernatant, thus leading to a SERS signal increase, which can be used for the highly sensitive analysis of target biomarkers. In addition, the limit of detection calculated for each biomarker indicates that the SERS-based aptasensor can well meet the detection requirements in clinical applications. Finally, the generality of this sensor in the early diagnosis of AKI is confirmed by using a rat model and spiked plasma samples. This sensing platform provides a facile and general route for sensitive SERS detection of AKI-related biomarkers, which offers great promising utility for in vitro and accurate practical bioassay in AKI early diagnosis.

11.
Chem Commun (Camb) ; 58(32): 5025-5028, 2022 Apr 19.
Article En | MEDLINE | ID: mdl-35373790

The two-electron oxygen reduction reaction (2e- ORR) has become a hopeful alternative for production of hydrogen peroxide (H2O2), but its practical feasibility is hindered by the lack of efficient electrocatalysts to achieve high activity and selectivity. Herein, we successfully synthesized outstanding nitrogen doped hollow carbon nanospheres (NHCSs) for electrochemical production of H2O2. In 0.1 M KOH, NHCSs exhibit superior and sustained catalytic activity for the 2e- ORR with an unordinary selectivity of 96.6%. Impressively, such NHCSs manifest an ultrahigh H2O2 yield rate of 7.32 mol gcat.-1 h-1 and a high faradaic efficiency of 96.7% at 0.5 V in an H-cell system. Density functional theory calculations were performed to further reveal the catalytic mechanism involved.

12.
ACS Omega ; 6(40): 26766-26772, 2021 Oct 12.
Article En | MEDLINE | ID: mdl-34661030

Metal-organic gels (MOGs) are attracting increasing attention for removal of organic dyes from aqueous solution and for catalysis of Si-H insertion reactions. Herein, we report that a reaction of porphyrin derivative 1 with Rh2(OAc)4 generates stable metal-organic gels and subsequent subcritical carbon dioxide drying affords metal-organic aerogels. Owing to their micro- and mesoporosity, the aerogels adsorbed dyes. Moreover, aerogel I catalyzed Si-H insertion reactions to give organosilicon compounds in high yields.

13.
J Org Chem ; 86(19): 13371-13380, 2021 10 01.
Article En | MEDLINE | ID: mdl-34533324

Herein we described an access to biaryl lactones from ortho-aryl benzoic acids via intramolecular O-H/C-H oxidative coupling with the commonly used cerium ammonium nitrate (CAN) as the one-electron oxidant under a thermal condition. The radical interrupting experiment suggested a radical process, while the kinetic isotope effect (KIE) showed that the C-H cleavage likely was not involved in the rate-determining step. Competitive reactions, especially the strikingly different ρ values of Hammett equations, indicated that the reaction rate was more sensitive to the electronic properties on the aryl moiety rather than the carboxylic moiety, which corresponded to the first single electron transfer (SET) step. In addition, the quite negative ρ values (-4.7) of the aryl moiety unveiled the remarkable electrophilic nature of the second intramolecular radical addition process, which was also consistent with product yields and regioselectivity. Moreover, control experiments disclosed that the single electron in the third step was also transferred to CeIV instead of molecular oxygen. Besides, the possible role of co-solvents trifluoroethanol (TFE) and its influences on the CeIV species were discussed. This work elucidated the possible mechanism by proposing the step that had more effects on the total reaction rate and the species that was responsible for the last single electron transfer.


Ammonium Compounds , Cerium , Lactones , Nitrates , Oxidation-Reduction
14.
Analyst ; 146(16): 5204-5211, 2021 Aug 09.
Article En | MEDLINE | ID: mdl-34312630

Malignant tumors are one of the main causes for human death and are tightly associated with overexpression of reactive oxygen species (ROS) in pathological processes. Therefore, in vivo monitoring of ROS, especially ONOO-, remains of great significance for diagnosis and therapy of tumors to improve the survival rate. Herein, we designed and constructed a reliable near-infrared (NIR) ratiometric fluorescent biosensor CDMS for monitoring the fluctuations of ONOO- in the process of tumor progression. CDMS featured outstanding stability to photoirradiation, substantial quantum yields, rapid response (<5 s), high selectivity and excellent biocompatibility. Moreover, CDMS exhibited distinct ratiometric fluorescence signal changes after reacting with ONOO-. Fluorescence imaging in immune stimulated cells indicated that CDMS was competent to determine the levels of ONOO- in the cellular level. Remarkably, CDMS was further applied in monitoring the expression of ONOO- in a peritonitis mouse model and tumor-bearing mouse model. Based on the excellent properties of CDMS, the probe exhibited the potential for noninvasive in vivo visualization of ONOO- in the occurrence and process of tumor development. It is envisioned that CDMS can be employed as a promising tool for monitoring the ONOO- fluxes in tumor pathological progression, especially for tumor diagnosis and therapy.


Biosensing Techniques , Peroxynitrous Acid , Animals , Diagnostic Imaging , Fluorescent Dyes , Humans , Mice , Optical Imaging , Reactive Oxygen Species
15.
J Mater Chem B ; 9(31): 6226-6233, 2021 08 21.
Article En | MEDLINE | ID: mdl-34320042

Idiopathic pulmonary fibrosis (IPF) is a devastating and fatal interstitial lung disease due to various challenges in diagnosis and treatment. Due to its complicated pathogenesis and difficulty in early diagnosis, there is no effective cure. Cyclooxygenase-2 (COX-2) is inextricably associated with pulmonary fibrosis. The abnormal level of COX-2 leads to extremely exacerbated pulmonary fibrosis. Therefore, we reported a near-infrared fluorescent probe Cy-COX to detect the fluctuation of COX-2 levels during pulmonary fibrosis and explain its important protective effect. The probe Cy-COX showed a significant enhancement of fluorescence signal to COX-2 with excellent selectivity and sensitivity. In order to clarify the relationship between COX-2 and pulmonary fibrosis, we used the probe Cy-COX to detect COX-2 fluctuation in organisms with pulmonary fibrosis. The results showed that the COX-2 level increased in the early stage and decreased in the late stage with the aggravation of pulmonary fibrosis. Furthermore, up-regulation of COX-2 levels can effectively alleviate the severity of pulmonary fibrosis. Therefore, Cy-COX is a fast and convenient imaging tool with great potential to predict the early stage of pulmonary fibrosis and evaluate the therapeutic effects.


Carbocyanines/chemistry , Cyclooxygenase 2/chemistry , Disease Models, Animal , Fluorescent Dyes/chemistry , Idiopathic Pulmonary Fibrosis/metabolism , Animals , Carbocyanines/metabolism , Cells, Cultured , Cyclooxygenase 2/metabolism , Fluorescent Dyes/metabolism , Idiopathic Pulmonary Fibrosis/diagnostic imaging , Infrared Rays , Mice , Mice, Inbred C57BL , Optical Imaging , Rats
16.
J Org Chem ; 86(7): 5354-5361, 2021 Apr 02.
Article En | MEDLINE | ID: mdl-33764062

A catalyst-free and transition-metal-free method for the synthesis of 1,2-diketones from aerobic alkyne oxidation was reported. The oxidation of various internal alkynes, especially more challenging aryl-alkyl acetylenes, proceeded smoothly with inexpensive, easily handled, and commercially available potassium persulfate and an ambient air balloon, achieving the corresponding 1,2-diketones with up to 85% yields. Meanwhile, mechanistic studies indicated a radical process, and the two oxygen atoms in the 1,2-diketons were most likely from persulfate salts and molecular oxygen, respectively, rather than water.

17.
Anal Chem ; 93(7): 3426-3435, 2021 02 23.
Article En | MEDLINE | ID: mdl-33569949

Phagocyte respiratory burst in immune responses generates enormous amounts of reactive oxygen species (ROS) to fulfill primary defense against neoplasia. However, the beneficial functions associated with ROS, especially the potent oxidant/nucleophile peroxynitrite, in an immunological process are still ambiguous. Herein, we report the construction and biological assessment of cyanine-based fluorescent biosensors, which are based on a nonoxidative strategy for peroxynitrite detection. The established nonoxidative strategy is composed of nucleophilic substitution and nanoaggregate formation initiated by peroxynitrite. The proposed nonoxidative strategy in this study could maintain cellular oxidative stress in the critical process of detection and preserve homeostasis of cell metabolism. The remarkable detection sensitivity, reaction selectivity, and spectral photostability of our biosensors enabled us to visualize endogenous peroxynitrite levels in immune-stimulated phagocytes. With the aid of basal peroxynitrite imaging in an acute peritonitis model, the visualization of peroxynitrite level variations in immune responses of tumorigenesis was accomplished assisted by our biosensors. It is envisioned that our strategy provides a promising tool for early tumor diagnosis and evaluation of tumor suppression in the process of immune responses without disturbing the functions of ROS signaling transduction.


Immunity , Peroxynitrous Acid , Carcinogenesis , Humans , Oxidation-Reduction , Reactive Oxygen Species
18.
ACS Appl Bio Mater ; 4(2): 1749-1759, 2021 02 15.
Article En | MEDLINE | ID: mdl-35014521

Although fluorinated carbon fiber/Ag composites possess unique structure and special charge distribution and exhibit great potential in numerous fields, their synthesis has long been a headache because of inert chemistry bonds, low surface energy, and easy aggregation. Herein, we first demonstrate a fresh concept of constructing the nanoscale hydrosoluble fluorinated carbon fiber oxide (FCO)/Ag composite and then integrate it as a highly effective targeting nanocarrier and photothermal therapy and antibacterial agent. Chemical introduction of oxygen allows us to controllably deposit Ag nanoparticles (AgNPs) for the first time and further facilitates surface modification with folic acid prelinked bovine serum albumin to induce targeted endocytosis toward tumor cells. The structure adjustment of FCO into nanosize and the decoration of AgNPs endow the composite with much better photothermal property than fluorinated carbon materials, and FCO/Ag also serves as an effective fluorescence quencher for doxorubicin, realizing visual monitor of drug adsorption processes by "turn-off" fluorescence. Meanwhile, both in vitro and in vivo results reveal greatly improved cancer therapeutic effects than single therapy. What is more is that the synergistic interactions of lipophilic fluorine and AgNPs also ensure highly effective antibacterial activity. Our study integrates FCO/Ag as an emerging drug carrier that exhibits excellent targeted efficiency and high photothemal property and reports its unprecedented experimental example in both antibacterial- and anticancer-combined chemo-photothermal therapy.


Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Biocompatible Materials/pharmacology , Carbon Fiber/chemistry , Escherichia coli/drug effects , Silver/chemistry , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Cell Survival/drug effects , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Screening Assays, Antitumor , Fluorescence , Halogenation , HeLa Cells , Humans , Materials Testing , Mice , Microbial Sensitivity Tests , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Particle Size
19.
Talanta ; 221: 121477, 2021 Jan 01.
Article En | MEDLINE | ID: mdl-33076090

Due to the potential threats of phosgene and nitrite to public health and safety, in this work, we first proposed the application of a facile dual-function fluorescent probe 2-(1H-Benzimidazol-2-yl)Aniline (BMA) for the detection of phosgene and nitrite in different solvent environments. BMA had fast response (1 min), high selectivity and sensitivity (the limit of detection was 1.27 nM) to phosgene in CH3CN solution (containing 10% DMSO), which manifested as a ratiometric fluorescent mode from 416 nm to 480 nm. The response of BMA to nitrite in HCl solution (pH = 1, containing 10% CH3CN) was also highly selective and sensitive (the limit of detection was 60.63 nM), which shown as a turn-off fluorescent mode at 485 nm. In addition, two portable chemosensors (BMA-loaded TLC plates and test strips) had also been successfully manufactured for the detection of phosgene in the gas phase and nitrite in solution, which displayed good responses. Most importantly, BMA had also been successfully used for detection of nitrite in food samples, and a good recovery (88.5%-107.2%) was obtained by adding standard sodium nitrite.


Phosgene , Fluorescent Dyes , Food Analysis , Nitrites/analysis , Phosgene/analysis , Spectrometry, Fluorescence
20.
Org Lett ; 22(21): 8326-8331, 2020 11 06.
Article En | MEDLINE | ID: mdl-33044076

Herein, a selective tandem C-C bond-forming reaction with CO2 was developed to realize the bridging of enaminones and synthesis of 1,4-dihydropyridines, respectively. n-Butylamine significantly promoted this CO2 deoxymethylenation procedure catalyzed by 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) and ZnCl2. The mechanism involving the formation of bis(silyl)acetal, nucleophilic addition, and amine elimination was also interpreted to clarify the bridging of two molecules of enaminones with CO2 and the generation of dihydropyridine derivatives.

...