Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Res ; 288: 127872, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39146705

ABSTRACT

Antimicrobial resistance has been an increasingly serious threat to global public health. The contribution of non-antibiotic pharmaceuticals to the development of antibiotic resistance has been overlooked. Our study found that the anti-inflammatory drug phenylbutazone could protect P. aeruginosa against antibiotic mediated killing by binding to the efflux pump regulator MexR. In this study, antibiotic activity against P. aeruginosa alone or in combination with phenylbutazone was evaluated in vitro and in vivo. Resazurin accumulation assay, transcriptomic sequencing, and PISA assay were conducted to explore the underlying mechanism for the reduced antibiotic susceptibility caused by phenylbutazone. Then EMSA, ITC, molecular dynamic simulations, and amino acid substitutions were used to investigate the interactions between phenylbutazone and MexR. We found that phenylbutazone could reduce the susceptibility of P. aeruginosa to multiple antibiotics, including parts of ß-lactams, fluoroquinolones, tetracyclines, and macrolides. Phenylbutazone could directly bind to MexR, then promote MexR dissociating from the mexA-mexR intergenic region and de-repress the expression of MexAB-OprM efflux pump. The overexpressed MexAB-OprM pump resulted in the reduced antibiotic susceptibility. And the His41 and Arg21 residues of MexR were involved in the phenylbutazone-MexR interaction. We hope this study would imply the potential risk of antibiotic resistance caused by non-antibiotic pharmaceuticals.

2.
Signal Transduct Target Ther ; 9(1): 183, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38972904

ABSTRACT

Helicobacter pylori (H. pylori) is currently recognized as the primary carcinogenic pathogen associated with gastric tumorigenesis, and its high prevalence and resistance make it difficult to tackle. A graph neural network-based deep learning model, employing different training sets of 13,638 molecules for pre-training and fine-tuning, was aided in predicting and exploring novel molecules against H. pylori. A positively predicted novel berberine derivative 8 with 3,13-disubstituted alkene exhibited a potency against all tested drug-susceptible and resistant H. pylori strains with minimum inhibitory concentrations (MICs) of 0.25-0.5 µg/mL. Pharmacokinetic studies demonstrated an ideal gastric retention of 8, with the stomach concentration significantly higher than its MIC at 24 h post dose. Oral administration of 8 and omeprazole (OPZ) showed a comparable gastric bacterial reduction (2.2-log reduction) to the triple-therapy, namely OPZ + amoxicillin (AMX) + clarithromycin (CLA) without obvious disturbance on the intestinal flora. A combination of OPZ, AMX, CLA, and 8 could further decrease the bacteria load (2.8-log reduction). More importantly, the mono-therapy of 8 exhibited comparable eradication to both triple-therapy (OPZ + AMX + CLA) and quadruple-therapy (OPZ + AMX + CLA + bismuth citrate) groups. SecA and BamD, playing a major role in outer membrane protein (OMP) transport and assembling, were identified and verified as the direct targets of 8 by employing the chemoproteomics technique. In summary, by targeting the relatively conserved OMPs transport and assembling system, 8 has the potential to be developed as a novel anti-H. pylori candidate, especially for the eradication of drug-resistant strains.


Subject(s)
Anti-Bacterial Agents , Berberine , Deep Learning , Helicobacter pylori , Helicobacter pylori/drug effects , Berberine/pharmacology , Berberine/chemistry , Berberine/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Animals , Omeprazole/pharmacology , Clarithromycin/pharmacology , Amoxicillin/pharmacology
3.
Acta Biomater ; 184: 323-334, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901753

ABSTRACT

The treatment of sepsis caused by multidrug-resistant (MDR) Gram-negative bacterial infections remains challenging. With these pathogens exhibiting resistance to carbapenems and new generation cephalosporins, the traditional antibiotic polymyxin B (PMB) has reemerged as a critical treatment option. However, its severe neurotoxicity and nephrotoxicity greatly limit the clinical application. Therefore, we designed negatively charged high-density lipoprotein (HDL) mimicking nanodiscs as a PMB delivery system, which can simultaneously reduce toxicity and enhance drug efficacy. The negative charge prevented the PMB release in physiological conditions and binding to cell membranes, significantly reducing toxicity in mammalian cells and mice. Notably, nanodisc-PMB exhibits superior efficacy than free PMB in sepsis induced by carbapenem-resistant Acinetobacter baumannii (CRAB) strains. Nanodisc-PMB shows promise as a treatment for carbapenem-resistant Gram-negative bacterial sepsis, especially caused by Acinetobacter baumannii, and the nanodiscs could be repurposed for other toxic antibiotics as an innovative delivery system. STATEMENT OF SIGNIFICANCE: Multidrug-resistant Gram-negative bacteria, notably carbapenem-resistant Acinetobacter baumannii, currently pose a substantial challenge due to the scarcity of effective treatments, rendering Polymyxins a last-resort antibiotic option. However, their therapeutic application is significantly limited by severe neurotoxic and nephrotoxic side effects. Prevailing polymyxin delivery systems focus on either reducing toxicity or enhancing bioavailability yet fail to simultaneously achieve both. In this scenario, we have developed a distinctive HDL-mimicking nanodisc for polymyxin B, which not only significantly reduces toxicity but also improves efficacy against Gram-negative bacteria, especially in sepsis caused by CRAB. This research offers an innovative drug delivery system for polymyxin B. Such advancement could notably improve the therapeutic landscape and make a significant contribution to the arsenal against these notorious pathogens.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Polymyxin B , Sepsis , Polymyxin B/pharmacology , Polymyxin B/chemistry , Acinetobacter baumannii/drug effects , Animals , Acinetobacter Infections/drug therapy , Sepsis/drug therapy , Mice , Nanostructures/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Lipoproteins, HDL/chemistry
4.
Front Microbiol ; 15: 1301204, 2024.
Article in English | MEDLINE | ID: mdl-38591032

ABSTRACT

Introduction: Mycobacterium tuberculosis (Mtb), the main cause of tuberculosis (TB), has brought a great burden to the world's public health. With the widespread use of Mtb drug-resistant strains, the pressure on anti-TB treatment is increasing. Anti-TB drugs with novel structures and targets are urgently needed. Previous studies have revealed a series of CYPs with important roles in the survival and metabolism of Mtb. However, there is little research on the structure and function of CYP138. Methods: In our study, to discover the function and targetability of CYP138, a cyp138-knockout strain was built, and the function of CYP138 was speculated by the comparison between cyp138-knockout and wild-type strains through growth curves, growth status under different carbon sources, infection curves, SEM, MIC tests, quantitative proteomics, and lipidomics. Results and discussion: The knockout of cyp138 was proven to affect the Mtb's macrophage infection, antibiotics susceptibility, and the levels of fatty acid metabolism, membrane-related proteins, and lipids such as triacylglycerol. We proposed that CYP138 plays an important role in the synthesis and decomposition of lipids related to the cell membrane structure as a new potential anti-tuberculosis drug target.

5.
Molecules ; 29(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38675646

ABSTRACT

Antibiotic resistance in Gram-negative bacteria remains one of the most pressing challenges to global public health. Blocking the transportation of lipopolysaccharides (LPS), a crucial component of the outer membrane of Gram-negative bacteria, is considered a promising strategy for drug discovery. In the transportation process of LPS, two components of the LPS transport (Lpt) complex, LptA and LptC, are responsible for shuttling LPS across the periplasm to the outer membrane, highlighting their potential as targets for antibacterial drug development. In the current study, a protein-protein interaction (PPI) model of LptA and LptC was constructed, and a molecular screening strategy was employed to search a protein-protein interaction compound library. The screening results indicated that compound 18593 exhibits favorable binding free energy with LptA and LptC. In comparison with the molecular dynamics (MD) simulations on currently known inhibitors, compound 18593 shows more stable target binding ability at the same level. The current study suggests that compound 18593 may exhibit an inhibitory effect on the LPS transport process, making it a promising hit compound for further research.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Carrier Proteins , Lipopolysaccharides , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Drug Discovery/methods , Gram-Negative Bacteria/drug effects , Lipopolysaccharides/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/metabolism
6.
Phytomedicine ; 128: 155400, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518641

ABSTRACT

BACKGROUND: The emergence and spread of vancomycin-resistant enterococci (VRE) have posed a significant challenge to clinical treatment, underscoring the need to develop novel strategies. As therapeutic options for VRE are limited, discovering vancomycin enhancer is a feasible way of combating VRE. Gambogic acid (GA) is a natural product derived from the resin of Garcinia hanburyi Hook.f. (Clusiaceae), which possesses antibacterial activity. PURPOSE: This study aimed to investigate the potential of GA as an adjuvant to restore the susceptibility of VRE to vancomycin. METHODS: In vitro antibacterial and synergistic activities were evaluated against vancomycin-susceptible and resistant strains by the broth microdilution method for the Minimal Inhibitory Concentrations (MICs) determination, and checkerboard assay and time-kill curve analysis for synergy evaluation. In vivo study was conducted on a mouse multi-organ infection model. The underlying antibacterial mechanism of GA was also explored. RESULTS: GA showed a potent in vitro activity against all tested strains, with MICs ranging from 2 to 4 µg/ml. The combination of GA and vancomycin exhibited a synergistic effect against 18 out of 23 tested VRE strains, with a median fractional inhibitory concentration index (FICI) of 0.254, and demonstrated a synergistic effect in the time-kill assay. The combination therapy exhibited a significant reduction in tissue bacterial load compared with either compound used alone. GA strongly binds to the ParE subunit of topoisomerase IV, a bacterial type II DNA topoisomerase, and suppresses its activity. CONCLUSIONS: The study suggests that GA has a significant antibacterial activity against enterococci, and sub-MIC concentrations of GA can restore the activity of vancomycin against VRE in vitro and in vivo. These findings indicate that GA has the potential to be a new antibacterial adjuvant to vancomycin in the treatment of infections caused by VRE.


Subject(s)
Anti-Bacterial Agents , Drug Synergism , Microbial Sensitivity Tests , Vancomycin-Resistant Enterococci , Vancomycin , Xanthones , Xanthones/pharmacology , Animals , Vancomycin-Resistant Enterococci/drug effects , Anti-Bacterial Agents/pharmacology , Vancomycin/pharmacology , Mice , Garcinia/chemistry , Female , Gram-Positive Bacterial Infections/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL