Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Front Immunol ; 14: 1238221, 2023.
Article in English | MEDLINE | ID: mdl-37809058

ABSTRACT

Introduction: Previous work in humans has demonstrated that both innate and adaptive immune signaling pathways contribute to the pathogenesis of idiopathic inflammatory myopathy (IIM), a systemic autoimmune disease targeting muscle as well as extra-muscular organs. To better define interactive signaling networks in IIM, we characterized the cellular phenotype and transcriptomic profiles of muscle-infiltrating cells in our established murine model of histidyl-tRNA synthetase (HRS)-induced myositis. Methods: Myositis was induced in wild type (WT) and various congenic/mutant strains of C57BL/6 mice through intramuscular immunization with recombinant HRS. Histopathological, immunohistochemical, flow cytometric, and transcriptomic assessments were used to characterize the functional relationship between muscle-infiltrating cell populations in these strains lacking different components of innate and/or adaptive immune signaling. Results: RAG1 KO mice developed markedly reduced muscle inflammation relative to WT mice, demonstrating a key requirement for T cells in driving HRS-induced myositis. While the reduction of mononuclear cell infiltrates in CD4-Cre.MyD88fl/fl conditional knockout mice and OT-II TCR transgenic mice highlighted roles for both innate and TCR-mediated/adaptive immune signaling in T cells, diminished inflammation in Lyz2-Cre.MyD88fl/fl conditional knockout mice underscored the importance of macrophage/myeloid cell populations in supporting T cell infiltration. Single cell RNA sequencing-based clustering of muscle-infiltrating subpopulations and associated pathway analyses showed that perturbations of T cell signaling/function alter the distribution and phenotype of macrophages, fibroblasts, and other non-lymphoid cell populations contributing to HRS-induced myositis. Discussion: Overall, HRS-induced myositis reflects the complex interplay between multiple cell types that collectively drive a TH1-predominant, pro-inflammatory tissue phenotype requiring antigen-mediated activation of both MyD88- and TCR-dependent T cell signaling pathways.


Subject(s)
Histidine-tRNA Ligase , Myositis , Humans , Mice , Animals , T-Lymphocytes , Mice, Inbred C57BL , Adaptive Immunity , Macrophages , Inflammation , Mice, Knockout , Receptors, Antigen, T-Cell
2.
Front Immunol ; 14: 1090177, 2023.
Article in English | MEDLINE | ID: mdl-38939646

ABSTRACT

Introduction: Distinct, disease-associated intracellular miRNA (miR) expression profiles have been observed in peripheral blood mononuclear cells (PBMCs) of systemic lupus erythematous (SLE) patients. Additionally, we have identified novel estrogenic responses in PBMCs from SLE patients and demonstrated that estrogen upregulates toll-like receptor (TLR)7 and TLR8 expression. TLR7 and TLR8 bind viral-derived single-stranded RNA to stimulate innate inflammatory responses, but recent studies have shown that miR-21, mir-29a, and miR-29b can also bind and activate these receptors when packaged and secreted in extracellular vesicles (EVs). The objective of this study was to evaluate the association of EV-encapsulated small RNA species in SLE and examine the therapeutic approach of miR inhibition in humanized mice. Methods: Plasma-derived EVs were isolated from SLE patients and quantified. RNA was then isolated and bulk RNA-sequencing reads were analyzed. Also, PBMCs from active SLE patients were injected into immunodeficient mice to produce chimeras. Prior to transfer, the PBMCs were incubated with liposomal EVs containing locked nucleic acid (LNA) antagonists to miR-21, mir-29a, and miR-29b. After three weeks, blood was collected for both immunophenotyping and cytokine analysis; tissue was harvested for histopathological examination. Results: EVs were significantly increased in the plasma of SLE patients and differentially expressed EV-derived small RNA profiles were detected compared to healthy controls, including miR-21, mir-29a, and miR-29b. LNA antagonists significantly reduced proinflammatory cytokines and histopathological infiltrates in the small intestine, liver, and kidney, as demonstrated by H&E-stained tissue sections and immunohistochemistry measuring human CD3. Discussion: These data demonstrate distinct EV-derived small RNA signatures representing SLE-associated biomarkers. Moreover, targeting upregulated EV-encapsulated miR signaling by antagonizing miRs that may bind to TLR7 and TLR8 reveals a novel therapeutic opportunity to suppress autoimmune-mediated inflammation and pathogenesis in SLE.


Subject(s)
Disease Models, Animal , Extracellular Vesicles , Leukocytes, Mononuclear , Lupus Erythematosus, Systemic , MicroRNAs , Toll-Like Receptor 7 , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/metabolism , Humans , Animals , MicroRNAs/genetics , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Mice , Female , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 7/genetics , Inflammation/immunology , Toll-Like Receptor 8/metabolism , Toll-Like Receptor 8/genetics , Adult , Male , Middle Aged , Mice, SCID
3.
Pharmaceuticals (Basel) ; 15(12)2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36559029

ABSTRACT

Aromatase Inhibitors (AIs) block estrogen production and improve survival in patients with hormone-receptor-positive breast cancer. However, half of patients develop aromatase-inhibitor-induced arthralgia (AIIA), which is characterized by inflammation of the joints and the surrounding musculoskeletal tissue. To create a platform for future interventional strategies, our objective was to characterize a novel animal model of AIIA. Female BALB/C-Tg(NFκB-RE-luc)-Xen mice, which have a firefly luciferase NFκB reporter gene, were oophorectomized and treated with an AI (letrozole). Bioluminescent imaging showed significantly enhanced NFκB activation with AI treatment in the hind limbs. Moreover, an analysis of the knee joints and legs via MRI showed enhanced signal detection in the joint space and the surrounding tissue. Surprisingly, the responses observed with AI treatment were independent of oophorectomy, indicating that inflammation is not mediated by physiological estrogen levels. Histopathological and pro-inflammatory cytokine analyses further demonstrated the same trend, as tenosynovitis and musculoskeletal infiltrates were detected in all mice receiving AI, and serum cytokines were significantly upregulated. Human PBMCs treated with letrozole/estrogen combinations did not demonstrate an AI-specific gene expression pattern, suggesting AIIA-mediated pathogenesis through other cell types. Collectively, these data identify an AI-induced stimulation of disease pathology and suggest that AIIA pathogenesis may not be mediated by estrogen deficiency, as previously hypothesized.

4.
Clin Exp Rheumatol ; 40(7): 1293-1298, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34369352

ABSTRACT

OBJECTIVES: To identify the anthocyanin content in tart cherry juice concentrate (TCJC) and establish the anti-inflammatory effect of in a murine acute gout model. METHODS: The main anthocyanins in the TCJC were identified by liquid chromatography mass spectroscopy (LCMS). TCJC or phosphate-buffered saline (PBS) as control were administered daily by oral gavage to BALB/C-Tg(NFκB-RE-luc)-Xen mice that harbour a firefly luciferase cDNA reporter under the regulation of 3 Nuclear factor-κB (NF-κB) response elements. After 14 days, gouty inflammation was induced by intra-articular injection of monosodium urate (MSU) crystals into the tibio-tarsal joint (ankle). NF-κB activity was measured locally in the injected ankle using the Xenogen in vivo imaging system (IVIS), and decalcified feet/ankles were paraffin-embedded and analysed histopathologically. RESULTS: The major anthocyanin compound present in TCJC was cyanidin 3-glucosylrutinoside followed by cyanidin 3-rutinoside. In the murine acute gout model, MSU injection increased NF-κB activity and oral administration of TCJC significantly reduced NF-κB activity in mouse foot, and ankle joints as assessed by IVIS analysis. Bioluminescent imaging detection of NF-κB activation was inhibited approximately 2-fold relative to control mice receiving PBS. Histopathologic examination showed suppression of infiltrates into the tibio-tarsal joint space of the mice receiving TCJC compared to PBS-treated control counterparts. CONCLUSIONS: The major anthocyanin in TCJC was cyanidin 3-glucosylrutinoside. Clinically relevant doses of TCJC significantly inhibit inflammation and NF-κB activation induced by MSU crystals.


Subject(s)
Arthritis, Gouty , Gout , Prunus avium , Animals , Anthocyanins , Arthritis, Gouty/drug therapy , Gout/chemically induced , Gout/drug therapy , Gout/pathology , Inflammation/pathology , Mice , Mice, Inbred BALB C , NF-kappa B
5.
J Control Release ; 329: 570-584, 2021 01 10.
Article in English | MEDLINE | ID: mdl-33031877

ABSTRACT

PURPOSE: Although more than 18,000,000 fractures occur each year in the US, methods to promote fracture healing still rely primarily on fracture stabilization, with use of bone anabolic agents to accelerate fracture repair limited to rare occasions when the agent can be applied to the fracture surface. Because management of broken bones could be improved if bone anabolic agents could be continuously applied to a fracture over the entire course of the healing process, we undertook to identify strategies that would allow selective concentration of bone anabolic agents on a fracture surface following systemic administration. Moreover, because hydroxyapatite is uniquely exposed on a broken bone, we searched for molecules that would bind with high affinity and specificity for hydroxyapatite. We envisioned that by conjugating such osteotropic ligands to a bone anabolic agent, we could acquire the ability to continuously stimulate fracture healing. RESULTS: Although bisphosphonates and tetracyclines were capable of localizing small amounts of peptidic payloads to fracture surfaces 2-fold over healthy bone, their specificities and capacities for drug delivery were significantly inferior to subsequent other ligands, and were therefore considered no further. In contrast, short oligopeptides of acidic amino acids were found to localize a peptide payload to a bone fracture 91.9 times more than the control untargeted peptide payload. Furthermore acidic oligopeptides were observed to be capable of targeting all classes of peptides, including hydrophobic, neutral, cationic, anionic, short oligopeptides, and long polypeptides. We further found that highly specific bone fracture targeting of multiple peptidic cargoes can be achieved by subcutaneous injection of the construct. CONCLUSIONS: Using similar constructs, we anticipate that healing of bone fractures in humans that have relied on immobilization alone can be greately enhanced by continuous stimulation of bone growth using systemic administration of fracture-targeted bone anabolic agents.


Subject(s)
Fractures, Bone , Bone and Bones , Diphosphonates , Fracture Healing , Fractures, Bone/drug therapy , Humans , Ligands
7.
PLoS One ; 15(10): e0237520, 2020.
Article in English | MEDLINE | ID: mdl-33002030

ABSTRACT

OBJECTIVES: Gout is the most prevalent inflammatory arthritis. To study the effects of regular physical activity and exercise intensity on inflammation and clinical outcome, we examined inflammatory pathogenesis in an acute model of murine gout and analyzed human gout patient clinical data as a function of physical activity. METHODS: NF-κB-luciferase reporter mice were organized into four groups and exercised at 0 m/min (non-exercise), 8 m/min (low-intensity), 11 m/min (moderate-intensity), and 15 m/min (high-intensity) for two weeks. Mice subsequently received intra-articular monosodium urate (MSU) crystal injections (0.5mg) and the inflammatory response was analyzed 15 hours later. Ankle swelling, NF-κB activity, histopathology, and tissue infiltration by macrophages and neutrophils were measured. Toll-like receptor (TLR)2 was quantified on peripheral monocytes/neutrophils by flow cytometry and both cytokines and chemokines were measured in serum or synovial aspirates. Clinical data and questionnaires accessing overall physical activity levels were collected from gout patients. RESULTS: Injection of MSU crystals produced a robust inflammatory response with increased ankle swelling, NF-κB activity, and synovial infiltration by macrophages and neutrophils. These effects were partially mitigated by low and moderate-intensity exercise. Furthermore, IL-1ß was decreased at the site of MSU crystal injection, TLR2 expression on peripheral neutrophils was downregulated, and expression of CXCL1 in serum was suppressed with low and moderate-intensity exercise. Conversely, the high-intensity exercise group closely resembled the non-exercised control group by nearly all metrics of inflammation measured in this study. Physically active gout patients had significantly less flares/yr, decreased C-reactive protein (CRP) levels, and lower pain scores relative to physically inactive patients. CONCLUSIONS: Regular, moderate physical activity can produce a quantifiable anti-inflammatory effect capable of partially mitigating the pathologic response induced by intra-articular MSU crystals by downregulating TLR2 expression on circulating neutrophils and suppressing systemic CXCL1. Low and moderate-intensity exercise produces this anti-inflammatory effect to varying degrees, while high-intensity exercise provides no significant difference in inflammation compared to non-exercising controls. Consistent with the animal model, gout patients with higher levels of physical activity have more favorable prognostic data. Collectively, these data suggest the need for further research and may be the foundation to a future paradigm-shift in conventional exercise recommendations provided by Rheumatologists to gout patients.


Subject(s)
Chemokine CXCL1/blood , Gout/therapy , Inflammation/prevention & control , Physical Conditioning, Animal , Toll-Like Receptor 2/blood , Animals , Disease Models, Animal , Down-Regulation , Exercise/physiology , Female , Gout/blood , Gout/pathology , Humans , Inflammation/blood , Inflammation/pathology , Interleukin-1beta/blood , Interleukin-1beta/metabolism , Macrophages/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Transgenic , Neutrophils/metabolism , Neutrophils/pathology , Pain/prevention & control , Prognosis , Synovial Membrane/metabolism , Synovial Membrane/pathology
8.
Lupus ; 29(13): 1790-1799, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33045900

ABSTRACT

OBJECTIVE: Since enhanced cardiac magnetic resonance imaging (cMRI) signals have been associated with lupus disease activity in humans prior to renal failure and novel, cardiac-focused therapeutic strategies could be investigated with an associated animal model, autoimmune myocarditis was characterized in murine lupus nephritis (NZM2410). METHODS: Weekly blood urea nitrogen (BUN) levels and weights were recorded. Cardiac function was assessed by echocardiogram. Myocardial edema was measured with quantitative T2 cMRI mapping. Endpoint serum and cardiac tissue were collected for histopathological analysis and cytokine measurements. RESULTS: Despite showing no signs of significant renal disease, mice displayed evidence of myocarditis and fibrosis histologically at 30-35 weeks. Moreover, T2 cMRI mapping displayed robust signals and analysis of sagittal heart sections showed significant myocardium thickening. Cytokine expression levels of IL-2, IL-10, TNF-α, CXCL1, and IL-6 were significantly enhanced in serum. Echocardiograms demonstrated significantly increased ventricular diameters and reduced ejection fractions, while immunohistochemical staining identified CD4+ and CD8+ T cells, and IL-17 in cardiac infiltrates. Human lupus cardiac tissue showed similar histopathology with enhanced infiltrates by H&E, fibrosis, and CD4+ detection. CONCLUSIONS: Histopathology, functional abnormalities, and enhanced cMRI signals indicative of myocarditis are detected in NZM2410 mice without glomerulonephritis, which supports the primary pathological role of autoimmune-mediated, cardiac-targeted inflammation in lupus.


Subject(s)
Glomerulonephritis/pathology , Lupus Nephritis/pathology , Myocarditis/pathology , Myocardium/pathology , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Disease Models, Animal , Echocardiography , Female , Fibrosis , Interleukin-17/metabolism , Lupus Nephritis/immunology , Lupus Nephritis/metabolism , Magnetic Resonance Imaging , Male , Mice , Mice, Inbred C57BL , Myocarditis/immunology , Myocarditis/metabolism
9.
J Environ Manage ; 255: 109897, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31783213

ABSTRACT

Gadolinium (Gd) is a rare earth element used in magnetic resonance imaging (MRI) contrast agents that has recently been identified as an emerging contaminant of concern due to its possible toxic effects and accumulation in the environment. The objectives of this preliminary study were to determine the occurrence and fate of Gd in surface water and sediment of a constructed wetland that receives effluent from a wastewater treatment plant. The rate of anthropogenic Gd entering the wetland was determined to be approximately 25 g Gd day-1, with surface water concentrations in the parts per trillion. Anthropogenic Gd concentrations in surface waters decreased as a function of distance from the inlet site to near the outfall, and were three orders of magnitude higher in sediment than in surface water suggesting that the wetland was providing a sink for Gd possibly through plant uptake and incorporation in organic biomass. An anthropogenic Gd anomaly was observed with an average GdAnt/GdGeo ratio of 5.34. Sediment with higher total organic carbon (TOC) tended to be higher in anthropogenic Gd, suggesting that Gd sequestration may occur through uptake by plants and/or through flocculation and deposition of natural organic matter.


Subject(s)
Gadolinium , Water Pollutants, Chemical , Environmental Monitoring , Surveys and Questionnaires , Wetlands
10.
Front Immunol ; 9: 1593, 2018.
Article in English | MEDLINE | ID: mdl-30042766

ABSTRACT

Macrophages and their monocyte precursors mediate innate immune responses and can promote a spectrum of phenotypes from pro-inflammatory to pro-resolving. Currently, there are few markers that allow for robust dissection of macrophage phenotype. We recently identified CD38 as a marker of inflammatory macrophages in murine in vitro and in vivo models. However, it is unknown whether CD38 plays a similar marker and/or functional role in human macrophages and inflammatory diseases. Here, we establish that CD38 transcript and protein are robustly induced in human macrophages exposed to LPS (±IFN-γ) inflammatory stimuli, but not with the alternative stimulus, IL-4. Pharmacologic and/or genetic CD38 loss-of-function significantly reduced the secretion of inflammatory cytokines IL-6 and IL-12p40 and glycolytic activity in human primary macrophages. Finally, monocyte analyses in systemic lupus erythematosus patients revealed that, while all monocytes express CD38, high CD38 expression in the non-classical monocyte subpopulation is associated with disease. These data are consistent with an inflammatory marker role for CD38 in human macrophages and monocytes.

11.
Bone Res ; 6: 8, 2018.
Article in English | MEDLINE | ID: mdl-29619268

ABSTRACT

Genome-wide association studies (GWASs) have been instrumental in understanding complex phenotypic traits. However, they have rarely been used to understand lineage-specific pathways and functions that contribute to the trait. In this study, by integrating lineage-specific enhancers from mesenchymal and myeloid compartments with bone mineral density loci, we were able to segregate osteoblast- and osteoclast (OC)-specific functions. Specifically, in OCs, a PU.1-dependent transcription factor (TF) network was revealed. Deletion of PU.1 in OCs in mice resulted in severe osteopetrosis. Functional genomic analysis indicated PU.1 and MITF orchestrated a TF network essential for OC differentiation. Several of these TFs were regulated by cooperative binding of PU.1 with BRD4 to form superenhancers. Further, PU.1 is essential for conformational changes in the superenhancer region of Nfatc1. In summary, our study demonstrates that combining GWASs with genome-wide binding studies and model organisms could decipher lineage-specific pathways contributing to complex disease states.

12.
Chem Asian J ; 12(13): 1668-1675, 2017 Jul 04.
Article in English | MEDLINE | ID: mdl-28605160

ABSTRACT

Anion-π interactions between the Lewis basic anion fluoride and π-acidic naphthalene diimide was systematically studied in a series of cyclophanes in which the properties are modulated through the influence of a second, electron-rich aromatic unit. The systems and subsequently generated radical anions, upon addition of fluoride, were studied by absorption spectroscopic and EPR techniques. The results infer a modulation as a result of the nature and strength of the π-π interaction in the macrocyclic structure.

13.
Front Physiol ; 8: 236, 2017.
Article in English | MEDLINE | ID: mdl-28491039

ABSTRACT

Daily moderate exercise (DME) and stress management are underemphasized in the care of patients with lupus nephritis (LN) due to a poor comprehensive understanding of their potential roles in controlling the inflammatory response. To investigate these effects on murine LN, disease progression was monitored with either DME or social disruption stress (SDR) induction in NZM2410/J mice, which spontaneously develop severe, early-onset LN. SDR of previously established social hierarchies was performed daily for 6 days and DME consisted of treadmill walking (8.5 m/min for 45 min/day). SDR significantly enhanced kidney disease when compared to age-matched, randomly selected control counterparts, as measured by histopathological analysis of H&E staining and immunohistochemistry for complement component 3 (C3) and IgG complex deposition. Conversely, while 88% of non-exercised mice displayed significant renal damage by 43 weeks of age, this was reduced to 45% with exercise. DME also reduced histopathology in kidney tissue and significantly decreased deposits of C3 and IgG complexes. Further examination of renal infiltrates revealed a macrophage-mediated inflammatory response that was significantly induced with SDR and suppressed with DME, which also correlated with expression of inflammatory mediators. Specifically, SDR induced IL-6, TNF-α, IL-1ß, and MCP-1, while DME suppressed IL-6, TNF-α, IL-10, CXCL1, and anti-dsDNA autoantibodies. These data demonstrate that psychological stressors and DME have significant, but opposing effects on the chronic inflammation associated with LN; thus identifying and characterizing stress reduction and a daily regimen of physical activity as potential adjunct therapies to complement pharmacological intervention in the management of autoimmune disorders, including LN.

14.
Front Immunol ; 8: 526, 2017.
Article in English | MEDLINE | ID: mdl-28539924

ABSTRACT

Since being discovered over half a century ago, mesenchymal stem cells (MSCs) have been investigated extensively to characterize their cellular and physiological influences. MSCs have been shown to possess immunosuppressive capacity through inhibiting lymphocyte activation/proliferation and proinflammatory cytokine secretion while simultaneously demonstrating limited allogenic reactivity, which subsequently led to the evaluation of therapeutic feasibility to treat inflammatory diseases. Although regulatory constraints have restricted MSC development pharmacologically, limited clinical studies have shown encouraging results using MSC infusions to treat systemic lupus erythematosus (SLE); but, more trials will have to be performed to conclusively determine the clinical efficacy of MSCs to treat SLE. Moreover, there are some data to suggest that MSCs possess tumorigenic potential and that the immunosuppressive influence can be dramatically affected by both donor variability and ex vivo expansion. Given that recent studies have found that the immunosuppressive effects of MSCs are a result, at least in part, to extracellular vesicle (EV) secretion, the use of MSC-derived EVs has been suggested as a cell-free therapeutic alternative. Despite the positive data observed using EVs isolated from human MSCs to suppress inflammatory responses in vitro and in inhibiting autoimmune disease pathogenesis in preclinical work, there are no studies to date examining EVs from MSCs to treat SLE in humans or animal models. Considering that EVs are not subject to the strict regulatory constraints of stem cell-based pharmacological development and are more readily standardized with regard to industrial-scale production and storage, this review outlines the anti-inflammatory biology of MSCs and the scientific evidence supporting the potential use of EVs derived from human MSCs to treat patients with SLE.

15.
Clin Immunol ; 176: 12-22, 2017 03.
Article in English | MEDLINE | ID: mdl-28039018

ABSTRACT

Recent studies implicate innate immunity to systemic lupus erythematosus (SLE) pathogenesis. Toll-like receptor (TLR)8 is estrogen-regulated and binds viral ssRNA to stimulate innate immune responses, but recent work indicates that microRNA (miR)-21 within extracellular vesicles (EVs) can also trigger this receptor. Our objective was to examine TLR8 expression/activation to better understand sex-biased responses involving TLR8 in SLE. Our data identify an estrogen response element that promotes STAT1 expression and demonstrate STAT1-dependent transcriptional activation of TLR8 with estrogen stimulation. In lieu of viral ssRNA activation, we explored EV-encapsulated miR-21 as an endogenous ligand and observed induction of both TLR8 and cytokine expression in vitro. Moreover, extracellular miR detection was found predominantly within EVs. Thus, just as a cytokine or chemokine, EV-encapsulated miR-21 can act as an inflammatory signaling molecule, or miRokine, by virtue of being an endogenous ligand of TLR8. Collectively, our data elucidates a novel innate inflammatory pathway in SLE.


Subject(s)
Estrogens/metabolism , Lupus Erythematosus, Systemic/metabolism , MicroRNAs/metabolism , STAT1 Transcription Factor/metabolism , Signal Transduction/physiology , Toll-Like Receptor 8/metabolism , Cell Line, Tumor , Chemokines/metabolism , Humans , Immunity, Innate/immunology , Inflammation/immunology , Inflammation/metabolism , Ligands , Lupus Erythematosus, Systemic/immunology , MCF-7 Cells
16.
Clin Immunol ; 156(1): 1-8, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25451161

ABSTRACT

Despite recent advances in the understanding of Sjögren's Syndrome (SjS), the pathogenic mechanisms remain elusive and an ideal model for early drug discovery is not yet available. To establish a humanized mouse model of SjS, peripheral blood mononuclear cells (PBMCs) from healthy volunteers or patients with SjS were transferred into immunodeficient NOD-scid IL-2rγ(null) mouse recipients to produce chimeric mice. While no difference was observed in the distribution of cells, chimeric mice transferred with PBMCs from SjS patients produced enhanced cytokine levels, most significantly IFN-γ and IL-10. Histological examination revealed enhanced inflammatory responses in the lacrimal and salivary glands of SjS chimeras, as measured by digital image analysis and blinded histopathological scoring. Infiltrates were primarily CD4+, with minimal detection of CD8+ T-cells and B-cells. These results demonstrate a novel chimeric mouse model of human SjS that provides a unique in vivo environment to test experimental therapeutics and investigate T-cell disease pathology.


Subject(s)
Chimera , Disease Models, Animal , Sjogren's Syndrome , Animals , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Humans , Mice , Sjogren's Syndrome/immunology
17.
PLoS One ; 9(11): e111559, 2014.
Article in English | MEDLINE | ID: mdl-25369140

ABSTRACT

Despite the widespread use of curcumin for centuries in Eastern medicine as an anti-inflammatory agent, its molecular actions and therapeutic viability have only recently been explored. While curcumin does have potential therapeutic efficacy, both solubility and bioavailability must be improved before it can be more successfully translated to clinical care. We have previously reported a novel formulation of nano-emulsion curcumin (NEC) that achieves significantly greater plasma concentrations in mice after oral administration. Here, we confirm the immunosuppressive effects of NEC in vivo and further examine its molecular mechanisms to better understand therapeutic potential. Using transgenic mice harboring an NFκB-luciferase reporter gene, we demonstrate a novel application of this in vivo inflammatory model to test the efficacy of NEC administration by bioluminescent imaging and show that LPS-induced NFκB activity was suppressed with NEC compared to an equivalent amount of curcumin in aqueous suspension. Administration of NEC by oral gavage resulted in a reduction of blood monocytes, decreased levels of both TLR4 and RAGE expression, and inhibited secretion of MCP-1. Mechanistically, curcumin blocked LPS-induced phosphorylation of the p65 subunit of NFκB and IκBα in murine macrophages. In a mouse model of peritonitis, NEC significantly reduced macrophage recruitment, but not T-cell or B-cell levels. In addition, curcumin treatment of monocyte derived cell lines and primary human macrophages in vitro significantly inhibited cell migration. These data demonstrate that curcumin can suppress inflammation by inhibiting macrophage migration via NFκB and MCP-1 inhibition and establish that NEC is an effective therapeutic formulation to increase the bioavailability of curcumin in order to facilitate this response.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Curcumin/administration & dosage , Macrophages/drug effects , NF-kappa B/immunology , Administration, Oral , Animals , Anti-Inflammatory Agents/pharmacology , Cell Line , Cell Movement/drug effects , Curcumin/pharmacology , Drug Carriers/chemistry , Emulsions/chemistry , Humans , Lipopolysaccharides/immunology , Macrophages/cytology , Macrophages/immunology , Mice , Mice, Inbred BALB C , Signal Transduction/drug effects
18.
Clin Immunol ; 151(1): 66-77, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24525049

ABSTRACT

Females of child-bearing age are more resistant to infectious disease and have an increased risk of systemic lupus erythematosus (SLE). We hypothesized that estrogen-induced gene expression could establish an immunoactivated state which would render enhanced defense against infection, but may be deleterious in autoimmune development. Using peripheral blood mononuclear cells (PBMCs), we demonstrate enhanced responses with immunogen stimulation in the presence of 17ß-estradiol (E2) and gene array analyses reveal toll-like receptor 8 (TLR8) as an E2-responsive candidate gene. TLR8 expression levels are up-regulated in SLE and PBMCs stimulated with TLR8 agonist display a female sex-biased, E2-sensitive response. Moreover, we identify a putative ERα-binding region near the TLR8 locus and blocking ERα expression significantly decreases E2-mediated TLR8 induction. Our findings characterize TLR8 as a novel estrogen target gene that can lower the inflammatory threshold and implicate an IFNα-independent inflammatory mechanism that could contribute to higher SLE incidence in women.


Subject(s)
Endosomes/drug effects , Estradiol/pharmacology , Estrogen Receptor alpha/immunology , Leukocytes, Mononuclear/drug effects , Lupus Erythematosus, Systemic/immunology , Toll-Like Receptor 8/immunology , Animals , Binding Sites , Cell Line, Tumor , Cells, Cultured , Endosomes/immunology , Endosomes/metabolism , Estrogen Receptor alpha/genetics , Female , Gene Expression Regulation , Humans , Imidazoles/pharmacology , Immunologic Factors/pharmacology , Interferon-alpha/immunology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/pathology , Male , Mice , Mice, Inbred C57BL , Protein Binding , Sex Factors , Signal Transduction , Toll-Like Receptor 8/agonists , Toll-Like Receptor 8/genetics
19.
Arthritis Rheum ; 65(12): 3259-70, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24022275

ABSTRACT

OBJECTIVE: Myositis is associated with muscle-targeted inflammation and is observed in some Treg cell-deficient mouse models. Because an autoimmune pathogenesis has been strongly implicated, the aim of this study was to investigate the hypothesis that abnormal exposure to muscle antigens, as observed in muscle injury, can induce autoimmune-mediated myositis in susceptible hosts. METHODS: FoxP3 mutant (scurfy) mice were mated to synaptotagmin VII (Syt VII) mutant mice, which resulted in a new mouse strain that combines impaired membrane resealing with Treg cell deficiency. Lymphocyte preparations from double-mutant mice were adoptively transferred intraperitoneally, with or without purified Treg cells, into recombination-activating gene 1 (RAG-1)-null recipients. Lymph node cells from mice with the FoxP3 mutation were transferred into RAG-1-null mice either 1) intraperitoneally in conjunction with muscle homogenate or purified myosin protein or 2) intramuscularly with or without cotransfer of purified Treg cells. RESULTS: FoxP3-deficient mouse lymph node cells transferred in conjunction with myosin protein or muscle homogenate induced robust skeletal muscle inflammation. The infiltrates consisted predominantly of CD4+ and CD8+ T cells, a limited number of macrophages, and no B cells. Significant inflammation was also seen in similar experiments using lymph node cells from FoxP3/Syt VII double-mutant mice but was absent in experiments using adoptive transfer of FoxP3 mutant mouse cells alone. The cotransfer of Treg cells completely suppressed myositis. CONCLUSION: These data, derived from a new, reproducible model, demonstrate the critical roles of Treg cell deficiency and aberrant muscle antigen exposure in the priming of autoreactive cells to induce myositis. This mouse system has multifaceted potential for examining the interplay in vivo between tissue injury and autoimmunity.


Subject(s)
Autoimmune Diseases/immunology , Muscle, Skeletal/immunology , Myositis/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Autoimmune Diseases/metabolism , Autoimmune Diseases/pathology , Autoimmunity/immunology , Disease Models, Animal , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Mice , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Myositis/metabolism , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/pathology
20.
Mol Immunol ; 54(1): 23-31, 2013 May.
Article in English | MEDLINE | ID: mdl-23178823

ABSTRACT

Systemic lupus erythematosus (SLE) is a prototypic, inflammatory autoimmune disease characterized by significant gender bias. Previous studies have established a role for hormones in SLE pathogenesis, including the sex hormone estrogen. Estrogen regulates gene expression by translocating estrogen receptors (ER) α and ß into the nucleus where they induce transcription by binding to estrogen response elements (EREs) of target genes. The ZAS3 locus encodes a signaling and transcriptional molecule involved in regulating inflammatory responses. We show that ZAS3 is significantly up-regulated in SLE patients at both the protein and mRNA levels in peripheral blood mononuclear cells (PBMCs). Furthermore, estrogen stimulates the expression of ZAS3 in vitro in several leukocyte and breast cancer cell lines of both human and murine origin. In vivo estrogen treatment mediates induction of tissue specific ZAS3 expression in several lymphoid organs in mice. Estrogen stimulation also significantly up-regulates ZAS3 expression in primary PBMCs, while treatment with testosterone has no effect. Mechanistically, estrogen induces differential ERα binding to putative EREs within the ZAS3 gene and ERα knockdown with siRNA prevents estrogen induced ZAS3 up-regulation. In contrast, siRNA targeting IFNα has no effect. These data demonstrate that ZAS3 expression is directly regulated by estrogen and that ZAS3 is overexpressed in lupus. Since ZAS3 has been shown to regulate inflammatory pathways, its up-regulation by estrogen could play a critical role in female-biased autoimmune disorders.


Subject(s)
DNA-Binding Proteins/genetics , Estradiol/pharmacology , Lupus Erythematosus, Systemic/genetics , Transcription Factors/genetics , Animals , Cells, Cultured , DNA-Binding Proteins/metabolism , Dose-Response Relationship, Drug , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogens/pharmacology , Female , Gene Expression Regulation/drug effects , Humans , Lupus Erythematosus, Systemic/metabolism , Mice , Mice, Inbred C57BL , Transcription Factors/metabolism , Up-Regulation/drug effects , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL