Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Infect Dis ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042731

ABSTRACT

BACKGROUND: Sapovirus is an important cause of acute gastroenteritis in childhood. While vaccines against sapovirus may reduce gastroenteritis burden, a major challenge to their development is a lack of information about natural immunity. METHODS: We measured sapovirus-specific IgG in serum collected, between 2017 and 2020, of mothers soon after delivery and at 6 time points in Nicaraguan children until 3 years of age (n=112 dyads) using virus-like particles representing three sapovirus genotypes (GI.1, GI.2, GV.1). RESULTS: Sixteen (14.3%) of the 112 children experienced at least one sapovirus gastroenteritis episode, of which GI.1 was the most common genotype. Seroconversion to GI.1 and GI.2 was most common between 5 and 12 months of age, while seroconversion to GV.1 peaked at 18 to 24 months of age. All children who experienced sapovirus GI.1 gastroenteritis seroconverted and developed genotype-specific IgG. The impact of sapovirus exposure on population immunity was determined using antigenic cartography: newborns share their mothers' broadly binding IgG responses, which declined at 5 months of age and then increased as infants experienced natural sapovirus infections. CONCLUSION: By tracking humoral immunity to sapovirus over the first 3 years of life, this study provides important insights for the design and timing of future pediatric sapovirus vaccines.

2.
J Virol ; 92(11)2018 06 01.
Article in English | MEDLINE | ID: mdl-29540599

ABSTRACT

Zoonotic viruses circulate as swarms in animal reservoirs and can emerge into human populations, causing epidemics that adversely affect public health. Portable, safe, and effective vaccine platforms are needed in the context of these outbreak and emergence situations. In this work, we report the generation and characterization of an alphavirus replicon vaccine platform based on a non-select agent, attenuated Venezuelan equine encephalitis (VEE) virus vaccine, strain 3526 (VRP 3526). Using both noroviruses and coronaviruses as model systems, we demonstrate the utility of the VRP 3526 platform in the generation of recombinant proteins, production of virus-like particles, and in vivo efficacy as a vaccine against emergent viruses. Importantly, packaging under biosafety level 2 (BSL2) conditions distinguishes VRP 3526 from previously reported alphavirus platforms and makes this approach accessible to the majority of laboratories around the world. In addition, improved outcomes in the vulnerable aged models as well as against heterologous challenge suggest improved efficacy compared to that of previously attenuated VRP approaches. Taking these results together, the VRP 3526 platform represents a safe and highly portable system that can be rapidly deployed under BSL2 conditions for generation of candidate vaccines against emerging microbial pathogens.IMPORTANCE While VEE virus replicon particles provide a robust, established platform for antigen expression and vaccination, its utility has been limited by the requirement for high-containment-level facilities for production and packaging. In this work, we utilize an attenuated vaccine strain capable of use at lower biocontainment level but retaining the capacity of the wild-type replicon particle. Importantly, the new replicon platform provides equal protection for aged mice and following heterologous challenge, which distinguishes it from other attenuated replicon platforms. Together, the new system represents a highly portable, safe system for use in the context of disease emergence.


Subject(s)
Antibodies, Viral/immunology , Encephalitis Virus, Venezuelan Equine/immunology , Encephalomyelitis, Venezuelan Equine/immunology , Severe Acute Respiratory Syndrome/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Vaccines, Attenuated/immunology , Viral Vaccines/immunology , Aging/immunology , Animals , Antibodies, Viral/blood , Cell Line , Chlorocebus aethiops , Encephalitis Virus, Venezuelan Equine/genetics , Encephalomyelitis, Venezuelan Equine/prevention & control , Encephalomyelitis, Venezuelan Equine/virology , Female , Humans , Mice , Mice, Inbred BALB C , Severe Acute Respiratory Syndrome/prevention & control , Severe Acute Respiratory Syndrome/virology , Vero Cells , Zoonoses/prevention & control , Zoonoses/virology
3.
J Virol ; 76(6): 3023-30, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11861868

ABSTRACT

The Norwalk virus (NV) capsid protein was expressed using Venezuelan equine encephalitis virus replicon particles (VRP-NV1). VRP-NV1 infection resulted in large numbers of recombinant NV-like particles that were primarily cell associated and were indistinguishable from NV particles produced from baculoviruses. Mutations located in the N-terminal and P1 domains of the NV capsid protein ablated capsid self-assembly in mammalian cells.


Subject(s)
Capsid/metabolism , Encephalitis Virus, Venezuelan Equine/genetics , Norwalk virus/metabolism , Replicon , Virus Assembly , Animals , Caco-2 Cells , Capsid/genetics , Cell Line , Encephalitis Virus, Venezuelan Equine/physiology , Genetic Vectors , Humans
4.
J Virol ; 76(2): 730-42, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11752163

ABSTRACT

Norwalk-like viruses (NLVs) are a diverse group of single-stranded, nonenveloped, positive-polarity RNA viruses and are the leading cause of epidemic acute gastroenteritis in the United States. In this study, the major capsid gene of Norwalk virus, the prototype NLV, has been cloned and expressed in mammalian cells using a Venezuelan equine encephalitis (VEE) replicon expression system. Upon infection of baby hamster kidney (BHK) cells with VEE replicon particles (VRPs), the Norwalk virus capsid proteins self-assemble to generate high titers of Norwalk virus-like particles (VLPs) that are morphologically and antigenically analogous to wild-type Norwalk virus. Mice inoculated subcutaneously with VRPs expressing the Norwalk virus capsid protein (VRP-NV1) developed systemic and mucosal immune responses to Norwalk VLPs, as well as heterotypic antibody responses to the major capsid protein from another genogroup I NLV strain (NCFL) isolated from a recent outbreak. A second Norwalk virus capsid clone (NV2) containing three amino acid codon mutations from the NV1 clone was also expressed using VEE replicons (VRP-NV2), but upon infection of BHK cells failed to confer VLP self-assembly. Mice inoculated with VRP-NV2 elicited reduced systemic and mucosal immune responses to Norwalk VLPs, demonstrating the importance and potential utility of endogenous VLP presentation for maximum immune induction. Inoculation with either VRP-NV1 or VRP-NV2 resulted in serum antibody responses far superior to the induction in mice dosed orally with VLPs that were prepared using the VEE-NV1 replicon construct, a regimen similar to current models for NLV vaccination. Expression of NLV VLPs in mammalian cells offers a powerful approach for the design of novel NLV vaccines, either alone or in combination with current vaccination models.


Subject(s)
Antibodies, Viral/immunology , Encephalitis Virus, Venezuelan Equine/genetics , Immunity, Mucosal , Norovirus/immunology , Replicon/genetics , Viral Vaccines/immunology , Virus Replication/genetics , Amino Acid Sequence , Animals , Antibodies, Viral/blood , Capsid/chemistry , Capsid/genetics , Capsid/immunology , Capsid/metabolism , Cell Line , Cloning, Molecular , Cricetinae , Cross Reactions/immunology , Encephalitis Virus, Venezuelan Equine/physiology , Genetic Vectors , Humans , Immunoglobulin A/analysis , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Intestines/immunology , Mice , Molecular Sequence Data , Norovirus/genetics , Vaccination , Viral Vaccines/biosynthesis , Viral Vaccines/genetics , Virus Assembly
SELECTION OF CITATIONS
SEARCH DETAIL