Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Invest Ophthalmol Vis Sci ; 65(5): 15, 2024 May 01.
Article En | MEDLINE | ID: mdl-38717426

Purpose: Mutations in the genes encoding type IV collagen alpha 1 (COL4A1) and alpha 2 (COL4A2) cause a multisystem disorder that includes ocular anterior segment dysgenesis (ASD) and glaucoma. We previously showed that transforming growth factor beta (TGFß) signaling was elevated in developing anterior segments from Col4a1 mutant mice and that reducing TGFß signaling ameliorated ASD, supporting a role for the TGFß pathway in disease pathogenesis. Here, we tested whether altered TGFß signaling also contributes to glaucoma-related phenotypes in Col4a1 mutant mice. Methods: To test the role of TGFß signaling in glaucoma-relevant phenotypes, we genetically reduced TGFß signaling using mice with mutated Tgfbr2, which encodes the common receptor for all TGFß ligands in Col4a1+/G1344D mice. We performed slit-lamp biomicroscopy and optical coherence tomography for qualitative and quantitative analyses of anterior and posterior ocular segments, histological analyses of ocular tissues and optic nerves, and intraocular pressure assessments using rebound tonometry. Results: Col4a1+/G1344D mice showed defects of the ocular drainage structures, including iridocorneal adhesions, and phenotypes consistent with glaucomatous neurodegeneration, including thinning of the nerve fiber layer, retinal ganglion cell loss, optic nerve head excavation, and optic nerve degeneration. We found that reducing TGFß receptor 2 (TGFBR2) was protective for ASD, ameliorated ocular drainage structure defects, and protected against glaucomatous neurodegeneration in Col4a1+/G1344D mice. Conclusions: Our results suggest that elevated TGFß signaling contributes to glaucomatous neurodegeneration in Col4a1 mutant mice.


Collagen Type IV , Glaucoma , Receptor, Transforming Growth Factor-beta Type II , Signal Transduction , Transforming Growth Factor beta , Animals , Mice , Anterior Eye Segment/metabolism , Anterior Eye Segment/pathology , Collagen Type IV/metabolism , Collagen Type IV/genetics , Disease Models, Animal , Glaucoma/metabolism , Glaucoma/genetics , Glaucoma/pathology , Intraocular Pressure/physiology , Mice, Inbred C57BL , Mutation , Optic Nerve/pathology , Optic Nerve/metabolism , Optic Nerve Diseases/metabolism , Optic Nerve Diseases/genetics , Phenotype , Receptor, Transforming Growth Factor-beta Type II/genetics , Receptor, Transforming Growth Factor-beta Type II/metabolism , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , Signal Transduction/physiology , Slit Lamp Microscopy , Tomography, Optical Coherence , Tonometry, Ocular , Transforming Growth Factor beta/metabolism
2.
Cell Rep ; 36(5): 109463, 2021 08 03.
Article En | MEDLINE | ID: mdl-34348156

Specificity and timing of synapse disassembly in the CNS are essential to learning how individual circuits react to neurodegeneration of the postsynaptic neuron. In sensory systems such as the mammalian retina, synaptic connections of second-order neurons are known to remodel and reconnect in the face of sensory cell loss. Here we analyzed whether degenerating third-order neurons can remodel their local presynaptic connectivity. We injured adult retinal ganglion cells by transiently elevating intraocular pressure. We show that loss of presynaptic structures occurs before postsynaptic density proteins and accounts for impaired transmission from presynaptic neurons, despite no evidence of presynaptic cell loss, axon terminal shrinkage, or reduced functional input. Loss of synapses is biased among converging presynaptic neuron types, with preferential loss of the major excitatory cone-driven partner and increased connectivity with rod-driven presynaptic partners, demonstrating that this adult neural circuit is capable of structural plasticity while undergoing neurodegeneration.


Nerve Net/pathology , Wounds and Injuries/pathology , Animals , Female , Intraocular Pressure , Light , Male , Mice , Presynaptic Terminals/pathology , Retinal Bipolar Cells/pathology , Retinal Ganglion Cells/pathology , Synapses/pathology
3.
PLoS One ; 15(7): e0235541, 2020.
Article En | MEDLINE | ID: mdl-32692745

The main objective of this pilot study was to identify circulatory microRNAs in aqueous or plasma that were reflecting changes in vitreous of diabetic retinopathy patients. Aqueous, vitreous and plasma samples were collected from a total of 27 patients undergoing vitreoretinal surgery: 11 controls (macular pucker or macular hole patients) and 16 with diabetes mellitus(DM): DM-Type I with proliferative diabetic retinopathy(PDR) (DMI-PDR), DM Type II with PDR(DMII-PDR) and DM Type II with nonproliferative DR(DMII-NPDR). MicroRNAs were isolated using Qiagen microRNeasy kit, quantified on BioAnalyzer, and profiled on Affymetrix GeneChip miRNA 3.0 microarrays. Data were analyzed using Expression Console, Transcriptome Analysis Console, and Ingenuity Pathway Analysis. The comparison analysis of circulatory microRNAs showed that out of a total of 847 human microRNA probes on the microarrays, common microRNAs present both in aqueous and vitreous were identified, and a large number of unique microRNA, dependent on the DM type and severity of retinopathy. Most of the dysregulated microRNAs in aqueous and vitreous of DM patients were upregulated, while in plasma, they were downregulated. Dysregulation of miRNAs in aqueous did not appear to be a good representative of the miRNA abundance in vitreous, or plasma, although a few potential candidates for common biomarkers stood out: let-7b, miR-320b, miR-762 and miR-4488. Additionally, each of the DR subtypes showed miRNAs that were uniquely dysregulated in each fluid (i.e. aqueous: for DMII-NPDR was miR-455-3p; for DMII-PDR was miR-296, and for DMI-PDR it was miR-3202). Pathway analysis identified TGF-beta and VEGF pathways affected. The comparative profiling of circulatory miRNAs showed that a small number of them displayed differential presence in diabetic retinopathy vs. controls. A pattern is emerging of unique molecular microRNA signatures in bodily fluids of DR subtypes, offering promise for the use of ocular fluids and plasma for diagnostic and therapeutic purposes.


Aqueous Humor/metabolism , Diabetic Retinopathy/metabolism , MicroRNAs/metabolism , Vitreous Body/metabolism , Diabetic Retinopathy/blood , Diabetic Retinopathy/genetics , Gene Expression Regulation , Humans , MicroRNAs/blood
4.
Hum Mol Genet ; 26(24): 4929-4936, 2017 12 15.
Article En | MEDLINE | ID: mdl-29040550

Inherited mitochondrial optic neuropathies, such as Leber's hereditary optic neuropathy (LHON) and Autosomal dominant optic atrophy (ADOA) are caused by mutant mitochondrial proteins that lead to defects in mitochondrial complex 1-driven ATP synthesis, and cause specific retinal ganglion cell (RGC) loss. Complex 1 defects also occur in patients with primary open angle glaucoma (POAG), in which there is specific RGC loss. The treatment of mitochondrial optic neuropathy in the US is only supportive. The Ndufs4 knockout (Ndufs4 KO) mouse is a mitochondrial complex 1-deficient model that leads to RGC loss and rapid vision loss and allows for streamlined testing of potential therapeutics. Preceding RGC loss in the Ndufs4 KO is the loss of starburst amacrine cells, which may be an important target in the mechanism of complex 1-deficient vision loss. Papaverine and zolpidem were recently shown to be protective of bioenergetic loss in cell models of optic neuropathy. Treatment of Ndufs4 KO mice with papaverine, zolpidem, and rapamycin-suppressed inflammation, prevented cell death, and protected from vision loss. Thus, in the Ndufs4 KO mouse model of mitochondrial optic neuropathy, papaverine and zolpidem provided significant protection from multiple pathophysiological features, and as approved drugs in wide human use could be considered for the novel indication of human optic neuropathy.


Electron Transport Complex I/metabolism , Optic Nerve Diseases/metabolism , Animals , DNA, Mitochondrial/metabolism , Disease Models, Animal , Electron Transport Complex I/deficiency , Electron Transport Complex I/genetics , Glaucoma, Open-Angle/metabolism , Humans , Inflammation/metabolism , Mediator Complex/metabolism , Mice , Mice, Knockout , Mitochondria/metabolism , Mitochondria/physiology , Mitochondrial Diseases/metabolism , Optic Nerve Diseases/genetics , Papaverine/pharmacology , Pyridines/pharmacology , Retinal Ganglion Cells/metabolism , Zolpidem
5.
Invest Ophthalmol Vis Sci ; 57(7): 3112-7, 2016 06 01.
Article En | MEDLINE | ID: mdl-27294805

PURPOSE: To determine the level of epithelial membrane protein-2 (EMP2) expression in preretinal membranes from surgical patients with proliferative vitreoretinopathy (PVR) or epiretinal membranes (ERMs). EMP2, an integrin regulator, is expressed in the retinal pigment epithelium and understanding EMP2 expression in human retinal disease may help determine whether EMP2 is a potential therapeutic target. METHODS: Preretinal membranes were collected during surgical vitrectomies after obtaining consents. The membranes were fixed, processed, sectioned, and protein expression of EMP2 was evaluated by immunohistochemistry. The staining intensity (SI) and percentage of positive cells (PP) in membranes were compared by masked observers. Membranes were categorized by their cause and type including inflammatory and traumatic. RESULTS: All of the membranes stained positive for EMP2. Proliferative vitreoretinopathy-induced membranes (all causes) showed greater expression of EMP2 than ERMs with higher SI (1.81 vs. 1.38; P = 0.07) and PP (2.08 vs. 1.54; P = 0.09). However all the PVR subgroups had similar levels of EMP2 expression without statistically significant differences by Kruskal-Wallis test. Inflammatory PVR had higher expression of EMP2 than ERMs (SI of 2.58 vs. 1.38); however, this was not statistically significant. No correlation was found between duration of PVR membrane and EMP2 expression. EMP2 was detected by RT-PCR in all samples (n = 6) tested. CONCLUSIONS: All studied ERMs and PVR membranes express EMP2. Levels of EMP2 trended higher in all PVR subgroups than in ERMs, especially in inflammatory and traumatic PVR. Future studies are needed to determine the role of EMP2 in the pathogenesis and treatment of various retinal conditions including PVR.


Epiretinal Membrane/genetics , Gene Expression Regulation , Membrane Glycoproteins/genetics , RNA/genetics , Retinal Pigment Epithelium/metabolism , Vitreoretinopathy, Proliferative/genetics , Adult , Aged , Cell Proliferation , Epiretinal Membrane/metabolism , Epiretinal Membrane/pathology , Female , Humans , Immunohistochemistry , Male , Membrane Glycoproteins/biosynthesis , Middle Aged , Real-Time Polymerase Chain Reaction , Retinal Pigment Epithelium/pathology , Vitreoretinopathy, Proliferative/metabolism , Vitreoretinopathy, Proliferative/pathology
6.
Hum Mol Genet ; 24(10): 2848-60, 2015 May 15.
Article En | MEDLINE | ID: mdl-25652399

Mitochondrial complex I (NADH dehydrogenase) is a major contributor to neuronal energetics, and mutations in complex I lead to vision loss. Functional, neuroanatomical and transcriptional consequences of complex I deficiency were investigated in retinas of the Ndufs4 knockout mouse. Whole-eye ERGs and multielectrode arrays confirmed a major retinal ganglion cell functional loss at P32, and retinal ganglion cell loss at P42. RNAseq demonstrated a mild and then sharp increase in innate immune and inflammatory retinal transcripts at P22 and P33, respectively, which were confirmed with QRT-PCR. Intraperitoneal injection of the inflammogen lipopolysaccharide further reduced retinal ganglion cell function in Ndufs4 KO, supporting the connection between inflammatory activation and functional loss. Complex I deficiency in the retina clearly caused innate immune and inflammatory markers to increase coincident with loss of vision, and RGC functional loss. How complex I incites inflammation and functional loss is not clear, but could be the result of misfolded complex I generating a 'non-self' response, and induction of innate immune response transcripts was observed before functional loss at P22, including ß-2 microglobulin and Cx3cr1, and during vision loss at P31 (B2m, Tlr 2, 3, 4, C1qa, Cx3cr1 and Fas). These data support the hypothesis that mitochondrial complex I dysfunction in the retina triggers an innate immune and inflammatory response that results in loss of retinal ganglion cell function and death, as in Leber's hereditary Optic Neuropathy and suggests novel therapeutic routes to counter mitochondrial defects that contribute to vision loss.


Electron Transport Complex I/deficiency , Mitochondrial Diseases/physiopathology , Retina/physiopathology , Retinal Ganglion Cells/physiology , Animals , Cell Death , Electron Transport Complex I/genetics , Electron Transport Complex I/immunology , Female , Gene Knockout Techniques , Immunity, Innate/genetics , Inflammation/genetics , Male , Mice , Mice, Knockout , Mitochondrial Diseases/genetics , Mitochondrial Diseases/immunology , Retina/immunology
7.
Invest Ophthalmol Vis Sci ; 54(3): 2216-24, 2013 Mar 01.
Article En | MEDLINE | ID: mdl-23439599

PURPOSE: Therapeutic retinal laser photocoagulation can damage the neurosensory retina and cause iatrogenic visual impairment. Subthreshold micropulse photocoagulation may decrease this risk by selective tissue treatment. The aim of this study was to compare subthreshold 810-nm diode micropulse laser and subthreshold 532-nm micropulse laser on the retina by histologic examination and differential protein expression. METHODS: Fourteen Dutch-belted rabbits received subthreshold 810-nm diode micropulse laser photocoagulation in their right eye and subthreshold 532-nm micropulse laser photocoagulation in their left eye. Histology and immunohistochemical detection of stromal cell-derived factor-1 (SDF-1), ß-actin, vascular endothelial growth factor (VEGF), glial fibrillary acidic protein (GFAP), and insulin-like growth factor 1 (IGF-1) were analyzed 12 hours, 3 days, 14 days, and 28 days post-laser photocoagulation. RESULTS: Histologically, all time points produced a similar degree of retinal disruption in both wavelengths. Immunohistochemically, SDF-1 expression was greatest at the 12-hour time point and decreased thereafter. SDF-1, VEGF, and ß-actin up-regulation was detected at early time points in both the 810- and 532-nm micropulse laser-treated animals. CONCLUSIONS: Subthreshold micropulse retinal laser photocoagulation caused equivalent histologic changes from both 532- and 810-nm diode lasers. Differential protein expression was not evident between the different laser conditions.


Laser Coagulation/adverse effects , Retina/radiation effects , Animals , Biomarkers/metabolism , Eye Proteins/metabolism , Immunohistochemistry , Laser Coagulation/methods , Rabbits , Retina/metabolism , Retina/pathology
...