Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29
1.
Phytomedicine ; 127: 155463, 2024 May.
Article En | MEDLINE | ID: mdl-38452694

BACKGROUND: Ferroptosis, a unique type of cell death triggered by iron-dependent lipid peroxidation, plays a critical role in the pathogenesis of Alzheimer's disease (AD), a debilitating condition marked by memory loss and cognitive impairment due to the accumulation of beta-amyloid (Aß) and hyperphosphorylated Tau protein. Increasing evidence suggests that inhibitors of ferroptosis could be groundbreaking in the treatment of AD. METHOD: In this study, we established in vitro ferroptosis using erastin-, RSL-3-, hemin-, and iFSP1-induced PC-12 cells. Using MTT along with Hoechst/PI staining, we assessed cell viability and death. To determine various aspects of ferroptosis, we employed fluorescence probes, including DCFDA, JC-1, C11 BODIPY, Mito-Tracker, and PGSK, to measure ROS production, mitochondrial membrane potential, lipid peroxidation, mitochondrial morphology, and intracellular iron levels. Additionally, Western blotting, biolayer interferometry technology, and shRNA were utilized to investigate the underlying molecular mechanisms. Furthermore, p-CAX APP Swe/Ind- and pRK5-EGFP-Tau P301L overexpressing PC-12 cells, along with Caenorhabditis elegans (C. elegans) strains CL4176, CL2331, and BR5270, were employed to examine ferroptosis in AD models. RESULTS: Here, we conducted a screening of our natural medicine libraries and identified the ethanol extract of Penthorum chinense Pursh (PEE), particularly its ethyl acetate fraction (PEF), displayed inhibitory effects on ferroptosis in cells. Specifically, PEF inhibited the generation of ROS, lipid peroxidation, and intracellular iron levels. Furthermore, PEF demonstrated protective effects against H2O2-induced cell death, ROS production, and mitochondrial damage. Mechanistic investigations unveiled PEF's modulation of intracellular iron accumulation, GPX4 expression and activity, and FSP1 expression. In p-CAX APP Swe/Ind and pRK5-EGFP-Tau P301L overexpressing PC-12 cells, PEF significantly reduced cell death, as well as ROS and lipid peroxidase production. Moreover, PEF ameliorated paralysis and slowing rate in Aß and Tau transgenic C. elegans models, while inhibiting ferroptosis, as evidenced by decreased DHE intensity, lipid peroxidation levels, iron accumulation, and expression of SOD-3 and gst-4. CONCLUSION: Our findings highlight the suppressive effects of PEF on ferroptosis in AD cellular and C. elegans models. This study helps us better understand how ferroptosis affects AD and emphasizes the potential of PCP as a candidate for AD intervention.


Alzheimer Disease , Ferroptosis , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Caenorhabditis elegans , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/pharmacology , Iron/metabolism
2.
Mech Ageing Dev ; 218: 111901, 2024 Apr.
Article En | MEDLINE | ID: mdl-38215997

Pharmacological strategies to delay aging and combat age-related diseases are increasingly promising. This study explores the anti-aging and therapeutic effects of two novel 18-norspirostane steroidal saponins from Trillium tschonoskii Maxim, namely deoxytrillenoside CA (DTCA) and epitrillenoside CA (ETCA), using Caenorhabditis elegans (C. elegans). Both DTCA and ETCA significantly extended the lifespan of wild-type N2 worms and improved various age-related phenotypes, including muscle health, motility, pumping rate, and lipofuscin accumulation. Furthermore, these compounds exhibited notable alleviation of pathology associated with Parkinson's disease (PD) and Huntington's disease (HD), such as the reduction of α-synuclein and poly40 aggregates, improvement in motor deficits, and mitigation of neuronal damage. Meanwhile, DTCA and ETCA improved the lifespan and healthspan of PD- and HD-like C. elegans models. Additionally, DTCA and ETCA enhanced the resilience of C. elegans against heat and oxidative stress challenges. Mechanistic studies elucidated that DTCA and ETCA induced mitophagy and promoted mitochondrial biogenesis in C. elegans, while genetic mutations or RNAi knockdown affecting mitophagy and mitochondrial biogenesis effectively eliminated their capacity to extend lifespan and reduce pathological protein aggregates. Together, these compelling findings highlight the potential of DTCA and ETCA as promising therapeutic interventions for delaying aging and preventing age-related diseases.


Caenorhabditis elegans Proteins , Parkinson Disease , Saponins , Animals , Caenorhabditis elegans/metabolism , Longevity , Mitophagy , Organelle Biogenesis , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Saponins/pharmacology
3.
CNS Neurosci Ther ; 30(4): e14515, 2024 04.
Article En | MEDLINE | ID: mdl-37905594

OBJECTIVE: Parkinson's disease (PD) is a debilitating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra. Despite extensive research, no definitive cure or effective disease-modifying treatment for PD exists to date. Therefore, the identification of novel therapeutic agents with neuroprotective properties is of utmost importance. Here, we aimed to investigate the potential neuroprotective effects of Carpesii fructus extract (CFE) in both cellular and Caenorhabditis elegans (C. elegans) models of PD. METHODS: The neuroprotective effect of CFE in H2O2- or 6-OHDA-induced PC-12 cells and α-synuclein-overexpressing PC-12 cells were investigated by determining the cell viability, mitochondrial damage, reactive oxygen species (ROS) production, apoptosis, and α-synuclein expression. In NL5901, BZ555, and N2 worms, the expression of α-synuclein, motive ability, the viability of dopaminergic neurons, lifespan, and aging-related phenotypes were investigated. The signaling pathway was detected by Western blotting and validated by employing small inhibitors and RNAi bacteria. RESULTS: In cellular models of PD, CFE significantly attenuated H2O2- or 6-OHDA-induced toxicity, as evidenced by increased cell viability and reduced apoptosis rate. In addition, CFE treatment suppressed ROS generation and restored mitochondrial membrane potential, highlighting its potential as a mitochondrial protective agent. Furthermore, CFE reduced the expression of α-synuclein in wide type (WT)-, A53T-, A30P-, or E46K-α-synuclein-overexpressing PC-12 cells. Our further findings reveal that CFE administration reduced α-synuclein expression and improved its induced locomotor deficits in NL5901 worms, protected dopaminergic neurons against 6-OHDA-induced degeneration in BZ555 worms, extended lifespan, delayed aging-related phenotypes, and enhanced the ability of stress resistance in N2 worms. Mechanistic studies suggest that the neuroprotective effects of CFE may involve the modulation of the MAPK signaling pathway, including ERK, JNK, and p38, whereas the interference of these pathways attenuated the neuroprotective effect of CFE in vitro and in vivo. CONCLUSION: Overall, our study highlights the potential therapeutic value of CFE as a neuroprotective agent in the context of PD. Furthermore, elucidation of the active compounds of CFE will provide valuable insights for the development of novel therapeutic strategies for PD.


Neuroprotective Agents , Parkinson Disease , Animals , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Reactive Oxygen Species/metabolism , Oxidopamine/toxicity , Hydrogen Peroxide/toxicity , Hydrogen Peroxide/metabolism , Dopaminergic Neurons/metabolism , Disease Models, Animal
4.
Int J Mol Sci ; 24(22)2023 Nov 20.
Article En | MEDLINE | ID: mdl-38003724

Alzheimer's disease (AD) presents a significant challenge to global healthcare systems, with current treatments offering only modest relief and often bringing unwanted side effects, necessitating the exploration of more effective and safer drugs. In this study, we employed the Caenorhabditis elegans (C. elegans) model, specifically the AD-like CL4176 strain expressing the human Aß(1-42) protein, to investigate the potential of Reineckia carnea extract and its fractions. Our results showed that the Reineckia carnea ether fraction (REF) notably diminished the paralysis rates of CL4176 worms. Additionally, REF also attenuated the neurotoxicity effects prompted by Tau proteins in the BR5270 worms. Moreover, REF was observed to counteract the accumulation of Aß and pTau proteins and their induced oxidative stress in C. elegans AD-like models. Mechanistic studies revealed that REF's benefits were associated with the induction of autophagy in worms; however, these protective effects were nullified when autophagy-related genes were suppressed using RNAi bacteria. Together, these findings highlight Reineckia carnea ether fraction as a promising candidate for AD treatment, warranting further investigation into its autophagy-inducing components and their molecular mechanisms.


Alzheimer Disease , Caenorhabditis elegans Proteins , Animals , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Caenorhabditis elegans/metabolism , Animals, Genetically Modified , Amyloid beta-Peptides/metabolism , Ether/pharmacology , Caenorhabditis elegans Proteins/metabolism , Ethyl Ethers/metabolism , Ethyl Ethers/pharmacology , Ethyl Ethers/therapeutic use , Ethers/pharmacology , Disease Models, Animal
5.
Biomed Pharmacother ; 167: 115478, 2023 Nov.
Article En | MEDLINE | ID: mdl-37703661

Blood retinal barrier (BRB) damage is an important pathogenesis of diabetic retinopathy, and alleviating BRB damage has become a key target for DR treatment. We previously found that Lycopene seed polyphenols (LSP) maintained BRB integrity by inhibiting NLRP3 inflammasome-mediated inflammation. However, it is still unknown whether LSP inhibits retinal neovascularization with abnormal capillaries and its mechanism of action. Here, we employed db/db mice and hRECs to find that LSP increases the level of glycolipid metabolism, maintains the morphology of retinal endothelial cells and inhibits acellular capillary neogenesis. Mechanistic studies revealed that LSP inhibits the NLRP3 inflammasome, reduces cell apoptosis in retinal tissue, increases tight junction protein (TJ) expression, and reduces vascular endothelial growth factor (VEGF) and Ve-Cadherin in vivo and in vitro. Collectively, this study finds that LSP inhibits inflammation and angiogenesis to improve BRB function to ameliorate DR.


Diabetic Retinopathy , Litchi , Mice , Animals , Inflammasomes/metabolism , Polyphenols/pharmacology , Polyphenols/metabolism , Endothelial Cells/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Vascular Endothelial Growth Factor A/metabolism , Diabetic Retinopathy/pathology , Inflammation/metabolism , Apoptosis
7.
Biomed Pharmacother ; 165: 115261, 2023 Sep.
Article En | MEDLINE | ID: mdl-37549461

Enhancing the clearance of proteins associated with Alzheimer's disease (AD) emerges as a promising approach for AD therapeutics. This study explores the potential of Radix Stellariae, a traditional Chinese medicine, in treating AD. Utilizing transgenic C. elegans models of AD, we demonstrated that a 75% ethanol extract of Radix Stellariae (RSE) (at 50 µg/mL) effectively diminishes Aß and Tau protein expression, and alleviates their induced impairments including paralysis, behavioral dysfunction, neurotoxicity, and ROS accumulation. Additionally, RSE enhances the stress resistance of C. elegans. Further investigations revealed that RSE promotes autophagy, a critical cellular process for protein degradation, in these models. We found that inhibiting autophagy-related genes negated the neuroprotective effects of RSE, suggesting a central role for autophagy in the actions of RSE. In PC-12 cells, we observed that RSE not only inhibited Aß fibril formation but also promoted the degradation of AD-related proteins and reduced their cytotoxicity. Mechanistically, RSE was found to induce autophagy via modulating PI3K/AKT/mTOR and AMPK/mTOR signaling pathways. Importantly, inhibiting autophagy counteracted the beneficial effects of RSE on the clearance of AD-associated proteins. Moreover, we identified Dichotomine B, a ß-carboline alkaloid, as a key active constituent of RSE in mitigating AD pathology in C. elegans at concentrations ranging from 50 to 1000 µM. Collectively, our study presents novel discoveries that RSE alleviates AD pathology and toxicity primarily by inducing autophagy, both in vivo and in vitro. These findings open up new avenues for exploring the therapeutic potential of RSE and its active component, Dichotomine B, in treating neurodegenerative diseases like AD.


Alzheimer Disease , Animals , Alzheimer Disease/metabolism , Caenorhabditis elegans/metabolism , Phosphatidylinositol 3-Kinases , Autophagy , TOR Serine-Threonine Kinases , Amyloid beta-Peptides/metabolism , Disease Models, Animal
8.
Phytother Res ; 37(10): 4639-4654, 2023 Oct.
Article En | MEDLINE | ID: mdl-37394882

BACKGROUND: Alzheimer's disease (AD) is a prevalent neurodegenerative disorder without an effective cure. Natural products, while showing promise as potential therapeutics for AD, remain underexplored. AIMS: This study was conducted with the goal of identifying potential anti-AD candidates from natural sources using Caenorhabditis elegans (C. elegans) AD-like models and exploring their mechanisms of action. MATERIALS & METHODS: Our laboratory's in-house herbal extract library was utilized to screen for potential anti-AD candidates using the C. elegans AD-like model CL4176. The neuroprotective effects of the candidates were evaluated in multiple C. elegans AD-like models, specifically targeting Aß- and Tau-induced pathology. In vitro validation was conducted using PC-12 cells. To investigate the role of autophagy in mediating the anti-AD effects of the candidates, RNAi bacteria and autophagy inhibitors were employed. RESULTS: The ethanol extract of air-dried fruits of Luffa cylindrica (LCE), a medicine-food homology species, was found to inhibit Aß- and Tau-induced pathology (paralysis, ROS production, neurotoxicity, and Aß and pTau deposition) in C. elegans AD-like models. LCE was non-toxic and enhanced C. elegans' health. It was shown that LCE activates autophagy and its anti-AD efficacy is weakened with the RNAi knockdown of autophagy-related genes. Additionally, LCE induced mTOR-mediated autophagy, reduced the expression of AD-associated proteins, and decreased cell death in PC-12 cells, which was reversed by autophagy inhibitors (bafilomycin A1 and 3-methyladenine). DISCUSSION: LCE, identified from our natural product library, emerged as a valuable autophagy enhancer that effectively protects against neurodegeneration in multiple AD-like models. RNAi knockdown of autophagy-related genes and cotreatment with autophagy inhibitors weakened its anti-AD efficacy, implying a critical role of autophagy in mediating the neuroprotective effects of LCE. CONCLUSION: Our findings highlight the potential of LCE as a functional food or drug for targeting AD pathology and promoting human health.


Alzheimer Disease , Caenorhabditis elegans Proteins , Luffa , Neuroprotective Agents , Animals , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Luffa/metabolism , Amyloid beta-Peptides/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Fruit/metabolism , Autophagy , Disease Models, Animal , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/pharmacology
9.
Phytomedicine ; 109: 154548, 2023 Jan.
Article En | MEDLINE | ID: mdl-36610154

BACKGROUND: Protein aggregates are considered key pathological features in neurodegenerative diseases (NDs). The induction of autophagy can effectively promote the clearance of ND-related misfolded proteins. OBJECTIVE: In this study, we aimed to screen natural autophagy enhancers from traditional Chinese medicines (TCMs) presenting potent neuroprotective potential in multiple ND models. METHODS: The autophagy enhancers were broadly screened in our established herbal extract library using the transgenic Caenorhabditis elegans (C. elegans) DA2123 strain. The neuroprotective effects of the identified autophagy enhancers were evaluated in multiple C. elegans ND models by measuring Aß-, Tau-, α-synuclein-, and polyQ40-induced pathologies. In addition, PC-12 cells and 3 × Tg-AD mice were employed to further validate the neuroprotective ability of the identified autophagy enhancers, both in vitro and in vivo. Furthermore, RNAi bacteria and autophagy inhibitors were used to evaluate whether the observed effects of the identified autophagy enhancers were mediated by the autophagy-activated pathway. RESULTS: The ethanol extract of Folium Hibisci Mutabilis (FHME) was found to significantly increase GFP::LGG-1-positive puncta in the DA2123 worms. FHME treatment markedly inhibited Aß, α-synuclein, and polyQ40, as well as prolonging the lifespan and improving the behaviors of C. elegans, while siRNA targeting four key autophagy genes partly abrogated the protective roles of FHME in C. elegans. Additionally, FHME decreased the expression of AD-related proteins and restored cell viability in PC-12 cells, which were canceled by cotreatment with 3-methyladenine (3-MA) or bafilomycin A1 (Baf). Moreover, FHME ameliorated AD-like cognitive impairment and pathology, as well as activating autophagy in 3 × Tg-AD mice. CONCLUSION: FHME was successfully screened from our natural product library as a potent autophagy enhancer that exhibits a neuroprotective effect in multiple ND models across species through the induction of autophagy. These findings offer a new and reliable strategy for screening autophagy inducers, as well as providing evidence that FHME may serve as a possible therapeutic agent for NDs.


Alzheimer Disease , Neurodegenerative Diseases , Neuroprotective Agents , Animals , Mice , alpha-Synuclein/metabolism , Caenorhabditis elegans , Neurodegenerative Diseases/drug therapy , Animals, Genetically Modified , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Autophagy , Alzheimer Disease/drug therapy
10.
Phytomedicine ; 108: 154483, 2023 Jan.
Article En | MEDLINE | ID: mdl-36260972

BACKGROUND: There are many types of neurological diseases with complex etiologies. At present, most clinical drugs can only relieve symptoms but cannot cure these diseases. Radix Polygalae, a famous traditional Chinese medicine from the root of plants of the genus Polygala, has the traditional effect of treating insomnia, forgetfulness, and palpitation and improving intelligence and other symptoms of neurological diseases. Saponins are important bioactive components of plants of the genus Polygala and exhibit neuroprotective effects. PURPOSE: This review aimed to summarize the traditional use of Polygala species and discuss the latest phytochemical, pharmacological, and toxicological findings, mainly with regard to Polygala saponins in the treatment of neurological disorders. METHODS: Literature was searched and collected using databases, including PubMed, Science Direct, CNKI, and Google Scholar. The search terms used included "Polygala", "saponins", "neurological diseases", "Alzheimer's disease", "toxicity", etc., and combinations of these keywords. A total of 1202 papers were retrieved until August 2022, and we included 135 of these papers on traditional uses, phytochemistry, pharmacology, toxicology and other fields. RESULTS: This literature review mainly reports on the traditional use of the Polygala genus and prescriptions containing Radix Polygalae in neurological diseases. Phytochemical studies have shown that plants of the genus Polygala mainly include saponins, flavonoids, oligosaccharide esters, alkaloids, coumarins, lignans, flavonoids, etc. Among them, saponins are the majority. Modern pharmacological studies have shown that Polygala saponins have neuroprotective effects on a variety of neurological diseases. Its mechanism of action involves autophagic degradation of misfolded proteins, anti-inflammatory, anti-apoptotic, antioxidative stress and so on. Toxicological studies have shown that Polygala saponins trigger gastrointestinal toxicity, and honey processing and glycosyl disruption of Polygala saponins can effectively ameliorate its gastrointestinal side effect. CONCLUSION: Polygala saponins are the major bioactive components in plants of the genus Polygala that exhibit therapeutic potential in various neurological diseases. This review provides directions for the future study of Polygala saponins and references for the clinical use of prescriptions containing Radix Polygalae for the treatment of neurological diseases.


Nervous System Diseases , Neuroprotective Agents , Polygala , Saponins , Humans , Saponins/pharmacology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Phytochemicals/therapeutic use , Nervous System Diseases/drug therapy , Flavonoids , Ethnopharmacology
11.
Nutr Neurosci ; 26(1): 11-24, 2023 Jan.
Article En | MEDLINE | ID: mdl-34927571

OBJECTIVES: Parkinson's disease (PD) is the second most common neurodegenerative disease. Chlorogenic acid (CGA) is a polyphenolic substance derived from various medicinal plants. Although CGA is reported to have potential anti-PD effect, the beneficial effect and the underlying mechanism remain unclear. In this study, we aimed to further investigate the protective effect and clarify the mechanism of action of CGA in Caenorhabditis elegans (C. elegans) models of PD. METHODS: Measurements of a-synuclein aggregation, movement disorders, and lipid, ROS and malondialdehyde (MDA) contents were observed in NL5901 nematodes. Determinations of dopamine (DA) neuron degeneration, food perception, and ROS content were performed in 6-OHDA-exposed BZ555 nematodes. The autophagy activation of CGA was monitored using DA2123 and BC12921 nematodes. Meanwhile, RNAi technology was employed to knockdown the autophagy-related genes and investigate whether the anti-PD effect of CGA was associated with autophagy induction in C. elegans. RESULTS: CGA significantly reduced α-synuclein aggregation, improved motor disorders, restored lipid content, and decreased ROS and MDA contents in NL5901 nematodes. Meanwhile, CGA inhibited DA neuron-degeneration and improved food-sensing behavior in 6-OHDA-exposed BZ555 nematodes. In addition, CGA increased the number of GFP::LGG-1 foci in DA2123 nematodes and degraded p62 protein in BC12921 nematodes. Meanwhile, CGA up-regulated the expression of autophagy-related genes in NL5901 nematodes. Moreover, the anti-PD effect of CGA was closely related to autophagy induction via increasing the expression of autophagy-related genes, including unc-51, bec-1, vps-34, and lgg-1. CONCLUSIONS: The present study indicates that CGA exerts neuroprotective effect in C. elegans via autophagy induction.


Neurodegenerative Diseases , Parkinson Disease , Animals , Parkinson Disease/metabolism , Caenorhabditis elegans , Chlorogenic Acid/pharmacology , Chlorogenic Acid/metabolism , Animals, Genetically Modified , Neurodegenerative Diseases/metabolism , Reactive Oxygen Species/metabolism , Oxidopamine , Nerve Degeneration , Autophagy , Lipids , Dopaminergic Neurons , Disease Models, Animal
12.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 27.
Article En | MEDLINE | ID: mdl-36355500

Plant polysaccharides (PPS) composed of more than 10 monosaccharides show high safety and various pharmacological activities, including immunoregulatory, antitumor, antioxidative, antiaging, and other effects. In recent years, emerging evidence has indicated that many PPS are beneficial for metabolic diseases, such as cardiovascular disease (CVD), diabetes, obesity, and neurological diseases, which are usually caused by the metabolic disorder of fat, sugar, and protein. In this review, we introduce the common characteristics and functional activity of many representative PPS, emphasize the common risks and molecular mechanism of metabolic diseases, and discuss the pharmacological activity and mechanism of action of representative PPS obtained from plants including Aloe vera, Angelica sinensis, pumpkin, Lycium barbarum, Ginseng, Schisandra chinensis, Dioscorea pposite, Poria cocos, and tea in metabolic diseases. Finally, this review will provide directions and a reference for future research and for the development of PPS into potential drugs for the treatment of metabolic diseases.

13.
Clin Immunol ; 244: 109093, 2022 11.
Article En | MEDLINE | ID: mdl-35944881

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Emerging evidence indicates that the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome is activated, which results in a cytokine storm at the late stage of COVID-19. Autophagy regulation is involved in the infection and replication of SARS-CoV-2 at the early stage and the inhibition of NLRP3 inflammasome-mediated lung inflammation at the late stage of COVID-19. Here, we discuss the autophagy regulation at different stages of COVID-19. Specifically, we highlight the therapeutic potential of autophagy activators in COVID-19 by inhibiting the NLRP3 inflammasome, thereby avoiding the cytokine storm. We hope this review provides enlightenment for the use of autophagy activators targeting the inhibition of the NLRP3 inflammasome, specifically the combinational therapy of autophagy modulators with the inhibitors of the NLRP3 inflammasome, antiviral drugs, or anti-inflammatory drugs in the fight against COVID-19.


COVID-19 , Pneumonia , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/pharmacology , Autophagy , Cytokine Release Syndrome , Humans , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , SARS-CoV-2
14.
Inflamm Regen ; 42(1): 25, 2022 Aug 03.
Article En | MEDLINE | ID: mdl-35918778

BACKGROUND: NLRP3 inflammasome-mediated neuroinflammation plays a critical role in the pathogenesis and development of Alzheimer's disease (AD). Microglial autophagic degradation not only decreases the deposits of extracellular Aß fibrils but also inhibits the activation of NRLP3 inflammasome. Here, we aimed to identify the potent autophagy enhancers from Penthorum chinense Pursh (PCP) that alleviate the pathology of AD via inhibiting the NLRP3 inflammasome. METHODS: At first, autophagic activity-guided isolation was performed to identify the autophagy enhancers in PCP. Secondly, the autophagy effect was monitored by detecting LC3 protein expression using Western blotting and the average number of GFP-LC3 puncta per microglial cell using confocal microscopy. Then, the activation of NLRP3 inflammasome was measured by detecting the protein expression and transfected fluorescence intensity of NLRP3, ASC, and caspase-1, as well as the secretion of proinflammatory cytokines. Finally, the behavioral performance was evaluated by measuring the paralysis in C. elegans, and the cognitive function was tested by Morris water maze (MWM) in APP/PS1 mice. RESULTS: Four ellagitannin flavonoids, including pinocembrin-7-O-[4″,6″-hexahydroxydiphenoyl]-glucoside (PHG), pinocembrin-7-O-[3″-O-galloyl-4″,6″-hexahydroxydiphenoyl]-glucoside (PGHG), thonningianin A (TA), and thonningianin B (TB), were identified to be autophagy enhancers in PCP. Among these, TA exhibited the strongest autophagy induction effect, and the mechanistic study demonstrated that TA activated autophagy via the AMPK/ULK1 and Raf/MEK/ERK signaling pathways. In addition, TA effectively promoted the autophagic degradation of NLRP3 inflammasome in Aß(1-42)-induced microglial cells and ameliorated neuronal damage via autophagy induction. In vivo, TA activated autophagy and improved behavioral symptoms in C. elegans. Furthermore, TA might penetrate the blood-brain barrier and could improve cognitive function and ameliorate the Aß pathology and the NLRP3 inflammasome-mediated neuroinflammation via the AMPK/ULK1 and Raf/MEK/ERK signaling pathways in APP/PS1 mice. CONCLUSION: We identified TA as a potent microglial autophagy enhancer in PCP that promotes the autophagic degradation of the NLRP3 inflammasome to alleviate the pathology of AD via the AMPK/ULK1 and Raf/MEK/ERK signaling pathways, which provides novel insights for TA in the treatment of AD.

15.
J Gerontol A Biol Sci Med Sci ; 77(11): 2186-2194, 2022 11 21.
Article En | MEDLINE | ID: mdl-35788666

Nutrition intervention has emerged as a potential strategy to delay aging and promote healthy longevity. Citri Reticulatae Semen (CRS) has diverse beneficial effects and has been used for thousands of years to treat pain. However, the health benefits of CRS in prolonging health span and improving aging-related diseases and the exact mechanisms remain poorly characterized. In this study, Caenorhabditis elegans (C. elegans) was used as a model organism to study the antiaging and health span promoting activities of 75% ethanol extract of CRS (CRSE). The results showed that treatment with CRSE at 1 000 µg/mL significantly extended the life span of worms by 18.93% without detriment to health span and fitness, as evidenced by the delayed aging-related phenotypes and increased body length and width, and reproductive output. In addition, CRSE treatment enhanced the ability of resistance to heat, oxidative, and pathogenic bacterial stress. Consistently, heat shock proteins and antioxidant enzyme-related and pathogenesis-related genes were up-regulated by CRSE treatment. Furthermore, CRSE supplementation also improved α-synuclein, 6-OHDA, and polyQ40-induced pathologies in transgenic C. elegans models of Parkinson's disease and Huntington's disease. The mechanistic study demonstrated that CRSE induced autophagy in worms, while the RNAi knockdown of 4 key autophagy-related genes, including lgg-1, bec-1, vps-34, and unc-51, remarkably abrogated the beneficial effects of CRSE on the extending of life span and health span and neuroprotection, demonstrating that CRSE exerts beneficial effects via autophagy induction in worms. Together, our current findings provide new insights into the practical application of CRS for the prevention of aging and aging-related diseases.


Caenorhabditis elegans Proteins , Healthy Aging , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Neuroprotection , Semen/metabolism , Longevity/genetics , Autophagy , Plant Extracts/pharmacology
16.
Mol Neurobiol ; 59(10): 5935-5954, 2022 Oct.
Article En | MEDLINE | ID: mdl-35829831

Neurodegenerative diseases (NDs), including chronic disease such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis, and acute diseases like traumatic brain injury and ischemic stroke are characterized by progressive degeneration, brain tissue damage and loss of neurons, accompanied by behavioral and cognitive dysfunctions. So far, there are no complete cures for NDs; thus, early and timely diagnoses are essential and beneficial to patients' treatment. Magnetic resonance imaging (MRI) has become one of the advanced medical imaging techniques widely used in the clinical examination of NDs due to its non-invasive diagnostic value. In this review, research published in English in current decade from PubMed electronic database on the use of MRI to detect specific biomarkers of NDs was collected, summarized, and discussed, which provides valuable suggestions for the early diagnosis, prevention, and treatment of NDs in the clinic.


Alzheimer Disease , Neurodegenerative Diseases , Parkinson Disease , Biomarkers , Humans , Magnetic Resonance Imaging , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/drug therapy
17.
Oxid Med Cell Longev ; 2022: 1015791, 2022.
Article En | MEDLINE | ID: mdl-35419162

Traumatic brain injury (TBI), known as mechanical damage to the brain, impairs the normal function of the brain seriously. Its clinical symptoms manifest as behavioral impairment, cognitive decline, communication difficulties, etc. The pathophysiological mechanisms of TBI are complex and involve inflammatory response, oxidative stress, mitochondrial dysfunction, blood-brain barrier (BBB) disruption, and so on. Among them, oxidative stress, one of the important mechanisms, occurs at the beginning and accompanies the whole process of TBI. Most importantly, excessive oxidative stress causes BBB disruption and brings injury to lipids, proteins, and DNA, leading to the generation of lipid peroxidation, damage of nuclear and mitochondrial DNA, neuronal apoptosis, and neuroinflammatory response. Transcription factor NF-E2 related factor 2 (Nrf2), a basic leucine zipper protein, plays an important role in the regulation of antioxidant proteins, such as oxygenase-1(HO-1), NAD(P)H Quinone Dehydrogenase 1 (NQO1), and glutathione peroxidase (GPx), to protect against oxidative stress, neuroinflammation, and neuronal apoptosis. Recently, emerging evidence indicated the knockout (KO) of Nrf2 aggravates the pathology of TBI, while the treatment of Nrf2 activators inhibits neuronal apoptosis and neuroinflammatory responses via reducing oxidative damage. Phytochemicals from fruits, vegetables, grains, and other medical herbs have been demonstrated to activate the Nrf2 signaling pathway and exert neuroprotective effects in TBI. In this review, we emphasized the contributive role of oxidative stress in the pathology of TBI and the protective mechanism of the Nrf2-mediated oxidative stress response for the treatment of TBI. In addition, we summarized the research advances of phytochemicals, including polyphenols, terpenoids, natural pigments, and otherwise, in the activation of Nrf2 signaling and their potential therapies for TBI. Although there is still limited clinical application evidence for these natural Nrf2 activators, we believe that the combinational use of phytochemicals such as Nrf2 activators with gene and stem cell therapy will be a promising therapeutic strategy for TBI in the future.


Brain Injuries, Traumatic , NF-E2-Related Factor 2 , Antioxidants/pharmacology , Brain Injuries, Traumatic/metabolism , Humans , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Phytochemicals/metabolism , Phytochemicals/pharmacology , Phytochemicals/therapeutic use
18.
Oxid Med Cell Longev ; 2022: 3723567, 2022.
Article En | MEDLINE | ID: mdl-35242276

Parkinson's disease (PD) is a complex neurological disorder characterized by motor and nonmotor features. Although some drugs have been developed for the therapy of PD in a clinical setting, they only alleviate the clinical symptoms and have yet to show a cure. In this study, by employing the C. elegans model of PD, we found that ferulic acid (FA) significantly inhibited α-synuclein accumulation and improved dyskinesia in NL5901 worms. Meanwhile, FA remarkably decreased the degeneration of dopaminergic (DA) neurons, improved the food-sensing behavior, and reduced the level of reactive oxygen species (ROS) in 6-OHDA-induced BZ555 worms. The mechanistic study discovered that FA could activate autophagy in C. elegans, while the knockdown of 3 key autophagy-related genes significantly revoked the neuroprotective effects of FA in α-synuclein- and 6-OHDA-induced C. elegans models of PD, demonstrating that FA exerts an anti-PD effect via autophagy induction in C. elegans. Furthermore, we found that FA could reduce 6-OHDA- or H2O2-induced cell death and apoptosis in PC-12 cells. Moreover, FA was able to induce autophagy in stable GFP-RFP-LC3 U87 cells and PC-12 cells, while bafilomycin A1 (Baf, an autophagy inhibitor) partly eliminated the protective effects of FA against 6-OHDA- and H2O2-induced cell death and ROS production in PC-12 cells, further confirming that FA exerts an anti-PD effect via autophagy induction in vitro. Collectively, our study provides novel insights for FA as a potent autophagy enhancer to effectively prevent neurodegenerative diseases such as PD in the future.


Autophagy/drug effects , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Coumaric Acids/pharmacology , Neuroprotective Agents/pharmacology , Parkinson Disease/metabolism , Signal Transduction/drug effects , Animals , Apoptosis/drug effects , Autophagy/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/metabolism , Dopaminergic Neurons/metabolism , Gene Knockdown Techniques/methods , Hydrogen Peroxide/pharmacology , Locomotion/drug effects , Locomotion/genetics , Oxidopamine/pharmacology , PC12 Cells , Parkinson Disease/pathology , RNA Interference , Rats , Reactive Oxygen Species/metabolism , Signal Transduction/genetics , alpha-Synuclein/metabolism
19.
Oxid Med Cell Longev ; 2022: 5288698, 2022.
Article En | MEDLINE | ID: mdl-35237381

Neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), are characterized by the progressive degeneration of neurons. Although the etiology and pathogenesis of neurodegenerative diseases have been studied intensively, the mechanism is still in its infancy. In general, most neurodegenerative diseases share common molecular mechanisms, and multiple risks interact and promote the pathologic process of neurogenerative diseases. At present, most of the approved drugs only alleviate the clinical symptoms but fail to cure neurodegenerative diseases. Numerous studies indicate that dietary plant polyphenols are safe and exhibit potent neuroprotective effects in various neurodegenerative diseases. However, low bioavailability is the biggest obstacle for polyphenol that largely limits its adoption from evidence into clinical practice. In this review, we summarized the widely recognized mechanisms associated with neurodegenerative diseases, such as misfolded proteins, mitochondrial dysfunction, oxidative damage, and neuroinflammatory responses. In addition, we summarized the research advances about the neuroprotective effect of the most widely reported dietary plant polyphenols. Moreover, we discussed the current clinical study and application of polyphenols and the factors that result in low bioavailability, such as poor stability and low permeability across the blood-brain barrier (BBB). In the future, the improvement of absorption and stability, modification of structure and formulation, and the combination therapy will provide more opportunities from the laboratory into the clinic for polyphenols. Lastly, we hope that the present review will encourage further researches on natural dietary polyphenols in the treatment of neurodegenerative diseases.


Antioxidants/therapeutic use , Neurodegenerative Diseases/drug therapy , Neuroprotective Agents/therapeutic use , Phytochemicals/therapeutic use , Phytotherapy/methods , Plant Extracts/therapeutic use , Polyphenols/therapeutic use , Animals , Antioxidants/classification , Biological Availability , Biological Transport , Blood-Brain Barrier/metabolism , Disease Models, Animal , Humans , Neurodegenerative Diseases/metabolism , Neuroprotective Agents/classification , Neuroprotective Agents/metabolism , Oxidative Stress/drug effects , Phytochemicals/classification , Phytochemicals/metabolism , Plant Extracts/classification , Polyphenols/classification , Polyphenols/metabolism , Treatment Outcome
20.
Free Radic Biol Med ; 179: 76-94, 2022 02 01.
Article En | MEDLINE | ID: mdl-34933095

Activation of the NLRP3 inflammasome and its mediated neuroinflammation are implicated in neurodegenerative diseases, while mitophagy negatively regulates NLRP3 inflammasome activation. SHP-2, a protein-tyrosine phosphatase, is critical for NLRP3 inflammasome regulation and inflammatory responses. In this study, we investigated whether triterpenoid saponins in Radix Polygalae inhibit the NLRP3 inflammasome via mitophagy induction. First, we isolated the active fraction (polygala saponins (PSS)) and identified 17 saponins by ultra-performance liquid chromatography coupled with diode-array detection and tandem quadrupole time-of-flight mass spectrometry (UHPLC-DAD-Q/TOF-MS). In microglial BV-2 cells, PSS induced mitophagy as evidenced by increased co-localization of LC3 and mitochondria, as well as an increased number of autophagic vacuoles surrounding the mitochondria. Furthermore, the mechanistic study found that PSS activated the AMPK/mTOR and PINK1/parkin signaling pathways via the upregulation of SHP-2. In Aß(1-42)-, A53T-α-synuclein-, or Q74-induced BV-2 cells, PSS significantly inhibited NLRP3 inflammasome activation, which was attenuated by bafilomycin A1 (an autophagy inhibitor) and SHP099 (an SHP-2 inhibitor). In addition, the co-localization of LC3 and ASC revealed that PSS promoted the autophagic degradation of the NLRP3 inflammasome. Moreover, PSS decreased apoptosis in conditioned medium-induced PC-12 cells. In APP/PS1 mice, PSS improved cognitive function, ameliorated Aß pathology, and inhibited neuronal death. Collectively, the present study, for the first time, shows that PSS inhibit the NLRP3 inflammasome via SHP-2-mediated mitophagy in vitro and in vivo, which strongly suggests the therapeutic potential of PSS in various neurodegenerative diseases.


Polygala , Saponins , Animals , Inflammasomes , Mice , Mitophagy , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Neuroinflammatory Diseases , Saponins/pharmacology
...