Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Reprod Immunol ; 163: 104244, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38555747

ABSTRACT

Implantation and maintenance of pregnancy involve intricate immunological processes that enable the developing fetus to coexist with the maternal immune system. Progesterone, a critical hormone during pregnancy, is known to promote immune tolerance and prevent preterm labor. However, the mechanism by which progesterone mediates these effects remains unclear. In this study, we investigated the role of the non-classical progesterone receptor membrane component 1 (PGRMC1) in progesterone signaling at the maternal-fetal interface. Using JEG3 cells, a trophoblast model cell line, we observed that progesterone stimulation increased the expression of human leukocyte antigen-C (HLA-C) and HLA-G, key molecules involved in immune tolerance. We also found that progesterone upregulated the expression of the transcription factor ELF3, which is known to regulate trophoblast-specific HLA-C expression. Interestingly, JEG3 cells lacked expression of classical progesterone receptors (PRs) but exhibited high expression of PGRMC1, a finding we confirmed in primary trophoblasts by mining sc-RNA seq data from human placenta. To investigate the role of PGRMC1 in progesterone signaling, we used CRISPR/Cas9 technology to knockout PGRMC1 in JEG3 cells. PGRMC1-deficient cells showed a diminished response to progesterone stimulation. Furthermore, we found that the progesterone antagonist RU486 inhibited ELF3 expression in a PGRMC1-dependent manner, suggesting that RU486 acts as a progesterone antagonist by competing for receptor binding. Additionally, we found that RU486 inhibited cell invasion, an important process for successful pregnancy, and this inhibitory effect was dependent on PGRMC1. Our findings highlight the crucial role of PGRMC1 in mediating the immunoregulatory effects of progesterone at the maternal-fetal interface.


Subject(s)
Membrane Proteins , Progesterone , Receptors, Progesterone , Trophoblasts , Humans , Receptors, Progesterone/metabolism , Female , Pregnancy , Progesterone/metabolism , Progesterone/pharmacology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Trophoblasts/metabolism , Trophoblasts/immunology , Placenta/immunology , Placenta/metabolism , Signal Transduction/immunology , Maternal-Fetal Exchange/immunology , Embryo Implantation/immunology
2.
J Neuroimmunol ; 383: 578191, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37660537

ABSTRACT

Hypertrophic pachymeningitis (HP) is a relatively rare disease of the central nervous system characterized by local or diffuse fibrous thickening of the dura mater. At present, there is still insufficient research on the pathogenesis and treatment strategies of this disease. We reported a continuous case series of seven patients with idiopathic HP (IHP), and also details one case of immunoglobulin G4-related HP requiring surgical intervention. Early diagnosis and appropriate surgical intervention for IHP could prevent the progression of permanent neurological damage and spinal cord paraplegia.


Subject(s)
Meningitis , Humans , Dura Mater/diagnostic imaging , Dura Mater/surgery , Dura Mater/pathology , Hypertrophy , Meningitis/complications , Meningitis/diagnostic imaging , Spinal Cord/pathology
3.
Drug Des Devel Ther ; 16: 2343-2363, 2022.
Article in English | MEDLINE | ID: mdl-35910780

ABSTRACT

Background: Icariin presents protective effect in several kidney diseases. However, the role of icariin in contrast-induced acute kidney injury (CIAKI) is still unclear. This study aimed to investigate the effect of icariin in CIAKI, as well as exploring the underlying mechanism from the aspect of interaction between protein-coding genes and non-coding RNAs. Methods: The effect of icariin was evaluated in both in vivo and in vitro CIAKI models. Rat kidneys were collected for genome-wide sequencing. The differentially expressed genes (DEGs) were screened and visualized by R software. The function annotation of DEGs was analyzed by Metascape. By Cytoscape software, the competing endogenous RNA (ceRNA) network was constructed, and hub genes were selected. Expressions of hub genes were validated by PCR. Association of hub genes in the ceRNA network and renal function was also examined. Results: Icariin protected against CIAKI in both in vivo and in vitro models. Based on DEGs in icariin pretreated CIAKI rats, lncRNA- and circRNA-associated ceRNA networks were constructed, respectively. Function annotation showed the ceRNA networks were enriched in ERK1 and ERK2 cascade, MAPK signaling and NF-κB signaling. Further, two circRNAs, six lncRNAs, four miRNAs and nine mRNAs were selected as hub genes of the ceRNA network. Among them, eight mRNAs (Acot1, Cbwd1, Ly6i, Map3k14, Mettl2b, Nyap1, Set and Utp20) were negatively correlated with renal function, while one mRNA (Tmem44) was positively correlated with renal function. Conclusion: Icariin presented a protective effect against CIAKI. The ceRNA network, involving Acot1, Cbwd1, Ly6i, Map3k14, Mettl2, Nyap1, Set, Tmem44 and Utp20, might partially contribute to the underlying mechanism of icariin protection by regulation of ERK1 and ERK2 cascade, MAPK signaling and NF-κB signaling.


Subject(s)
Acute Kidney Injury , MicroRNAs , RNA, Long Noncoding , Acute Kidney Injury/chemically induced , Acute Kidney Injury/genetics , Acute Kidney Injury/prevention & control , Animals , Flavonoids , Gene Regulatory Networks , MicroRNAs/metabolism , NF-kappa B/genetics , RNA, Circular , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , Rats
SELECTION OF CITATIONS
SEARCH DETAIL