Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Hepatol Int ; 18(2): 673-687, 2024 Apr.
Article En | MEDLINE | ID: mdl-37332023

INTRODUCTION: We aimed to determine the diagnostic criteria of myosteatosis in a Chinese population and investigate the effect of skeletal muscle abnormalities on the outcomes of cirrhotic patients. METHODS: Totally 911 volunteers were recruited to determine the diagnostic criteria and impact factors of myosteatosis, and 480 cirrhotic patients were enrolled to verify the value of muscle alterations for prognosis prediction and establish new noninvasive prognostic strategies. RESULTS: Multivariate analysis showed age, sex, weight, waist circumference, and biceps circumference had a remarkable influence on the L3 skeletal muscle density (L3-SMD). Based on the cut-off of a mean - 1.28 × SD among adults aged < 60 years, the diagnostic criteria for myosteatosis was L3-SMD < 38.93 Hu in males and L3-SMD < 32.82 Hu in females. Myosteatosis rather than sarcopenia has a close correlation with portal hypertension. The concurrence of sarcopenia and myosteatosis not only is associated with poor liver function but also evidently reduced the overall and liver transplantation-free survival of cirrhotic patients (p < 0.001). According to the stepwise Cox regression hazard model analysis, we established nomograms including TBil, albumin, history of HE, ascites grade, sarcopenia, and myosteatosis for easily determining survival probabilities in cirrhotic patients. The AUC is 0.874 (95% CI 0.800-0.949) for 6-month survival, 0.831 (95% CI 0.764-0.898) for 1-year survival, and 0.813 (95% CI 0.756-0.871) for 2-year survival prediction, respectively. CONCLUSIONS: This study provides evidence of the significant correlation between skeletal muscle alterations and poor outcomes of cirrhosis, and establishes valid and convenient nomograms incorporating musculoskeletal disorders for the prognostic prediction of liver cirrhosis. Further large-scale prospective studies are necessary to verify the value of the nomograms.


Sarcopenia , Male , Adult , Female , Humans , Sarcopenia/complications , Sarcopenia/diagnosis , Prospective Studies , Muscle, Skeletal/pathology , Liver Cirrhosis/pathology , Prognosis , Retrospective Studies
2.
Front Nutr ; 10: 1162031, 2023.
Article En | MEDLINE | ID: mdl-37252248

Background and aims: Vitamin C, as an antioxidant, may play a role in the treatment of NAFLD. This research aimed to investigate the association of serum vitamin C levels with the risk of NAFLD and to further examine the causal relationship by Mendelian randomization (MR) method. Methods: The cross-sectional study selected 5,578 participants of the National Health and Nutrition Examination Survey (NHANES), 2005-2006 and 2017-2018. The association of serum vitamin C levels with NAFLD risk was evaluated under a multivariable logistic regression model. A two-sample MR study, using genetic data from large-scale genome-wide association studies (GWAS) of serum vitamin C levels (52,014 individuals) and NAFLD (primary analysis: 1,483 cases /17,781 controls; secondary analysis: 1,908 cases/340,591 controls), was conducted to infer causality between them. The inverse-variance-weighted (IVW) was applied as the main method of MR analysis. A series of sensitivity analyzes were used to evaluate the pleiotropy. Results: In the cross-sectional study, results showed that Tertile 3 group (Tertile 3: ≥1.06 mg/dl) had a significantly lower risk (OR = 0.59, 95% CI: 0.48 ~ 0.74, p < 0.001) of NAFLD than Tertile 1 group (Tertile 1: ≤0.69 mg/dl) after full adjustments. In regard to gender, serum vitamin C was protective against NAFLD in both women (OR = 0.63, 95% CI: 0.49 ~ 0.80, p < 0.001) and men (OR = 0.73, 95% CI: 0.55 ~ 0.97, p = 0.029) but was stronger among women. However, in the IVW of MR analyzes, no causal relationship between serum vitamin C levels and NAFLD risk was observed in the primary analysis (OR = 0.82, 95% CI: 0.47 ~ 1.45, p = 0.502) and secondary analysis (OR = 0.80, 95% CI: 0.53 ~ 1.22, p = 0.308). MR sensitivity analyzes yielded consistent results. Conclusion: Our MR study did not support a causal association between serum vitamin C levels and NAFLD risk. Further studies with greater cases are warranted to confirm our findings.

3.
Mol Plant ; 15(12): 1908-1930, 2022 12 05.
Article En | MEDLINE | ID: mdl-36303433

Ongoing soil salinization drastically threatens crop growth, development, and yield worldwide. It is therefore crucial that we improve salt tolerance in rice by exploiting natural genetic variation. However, many salt-responsive genes confer undesirable phenotypes and therefore cannot be effectively applied to practical agricultural production. In this study, we identified a quantitative trait locus for salt tolerance from the African rice species Oryza glaberrima and named it as Salt Tolerance and Heading Date 1 (STH1). We found that STH1 regulates fatty acid metabolic homeostasis, probably by catalyzing the hydrolytic degradation of fatty acids, which contributes to salt tolerance. Meanwhile, we demonstrated that STH1 forms a protein complex with D3 and a vital regulatory factor in salt tolerance, OsHAL3, to regulate the protein abundance of OsHAL3 via the 26S proteasome pathway. Furthermore, we revealed that STH1 also serves as a co-activator with the floral integrator gene Heading date 1 to balance the expression of the florigen gene Heading date 3a under different circumstances, thus coordinating the regulation of salt tolerance and heading date. Notably, the allele of STH1 associated with enhanced salt tolerance and high yield is found in some African rice accessions but barely in Asian cultivars. Introgression of the STH1HP46 allele from African rice into modern rice cultivars is a desirable approach for boosting grain yield under salt stress. Collectively, our discoveries not only provide conceptual advances on the mechanisms of salt tolerance and synergetic regulation between salt tolerance and flowering time but also offer potential strategies to overcome the challenges resulted from increasingly serious soil salinization that many crops are facing.


Oryza , Salt Tolerance , Salt Tolerance/genetics , Oryza/genetics , Hydrolases , Family
4.
Science ; 376(6599): 1293-1300, 2022 06 17.
Article En | MEDLINE | ID: mdl-35709289

How the plasma membrane senses external heat-stress signals to communicate with chloroplasts to orchestrate thermotolerance remains elusive. We identified a quantitative trait locus, Thermo-tolerance 3 (TT3), consisting of two genes, TT3.1 and TT3.2, that interact together to enhance rice thermotolerance and reduce grain-yield losses caused by heat stress. Upon heat stress, plasma membrane-localized E3 ligase TT3.1 translocates to the endosomes, on which TT3.1 ubiquitinates chloroplast precursor protein TT3.2 for vacuolar degradation, implying that TT3.1 might serve as a potential thermosensor. Lesser accumulated, mature TT3.2 proteins in chloroplasts are essential for protecting thylakoids from heat stress. Our findings not only reveal a TT3.1-TT3.2 genetic module at one locus that transduces heat signals from plasma membrane to chloroplasts but also provide the strategy for breeding highly thermotolerant crops.


Chloroplasts , Oryza , Plant Proteins , Quantitative Trait Loci , Thermotolerance , Chloroplasts/genetics , Chloroplasts/physiology , Genes, Plant , Oryza/genetics , Oryza/physiology , Plant Breeding/methods , Plant Proteins/genetics , Thermotolerance/genetics
5.
Commun Biol ; 4(1): 1171, 2021 10 07.
Article En | MEDLINE | ID: mdl-34620988

Grain size is a key component trait of grain weight and yield. Numbers of quantitative trait loci (QTLs) have been identified in various bioprocesses, but there is still little known about how metabolism-related QTLs influence grain size and yield. The current study report GS3.1, a QTL that regulates rice grain size via metabolic flux allocation between two branches of phenylpropanoid metabolism. GS3.1 encodes a MATE (multidrug and toxic compounds extrusion) transporter that regulates grain size by directing the transport of p-coumaric acid from the p-coumaric acid biosynthetic metabolon to the flavonoid biosynthetic metabolon. A natural allele of GS3.1 was identified from an African rice with enlarged grains, reduced flavonoid content and increased lignin content in the panicles. Notably, the natural allele of GS3.1 caused no alterations in other tissues and did not affect stress tolerance, revealing an ideal candidate for breeding efforts. This study uncovers insights into the regulation of grain size though metabolic-flux distribution. In this way, it supports a strategy of enhancing crop yield without introducing deleterious side effects on stress tolerance mechanisms.


Edible Grain/growth & development , Flavonoids/metabolism , Lignin/metabolism , Organic Cation Transport Proteins/genetics , Oryza/genetics , Plant Proteins/genetics , Metabolic Flux Analysis , Organic Cation Transport Proteins/metabolism , Oryza/growth & development , Oryza/metabolism , Plant Proteins/metabolism , Stress, Physiological
6.
J Cachexia Sarcopenia Muscle ; 12(6): 1948-1958, 2021 12.
Article En | MEDLINE | ID: mdl-34520115

BACKGROUND: Diagnostic criteria for sarcopenia have not been established in Chinese. This study established criteria based on the L3-skeletal muscle index (L3-SMI) and assessed its value for outcomes predicting in cirrhotic Chinese patients. METHODS: Totally 911 subjects who underwent a CT scan at two centres were enrolled in Cohort 1 (394 male and 417 female subjects, aged 20-80 years). The data of those subjects younger than 60 years (365 male and 296 female subjects) were used to determine the reference intervals of the L3-SMI and its influencing factors. Cohort 2 consisted of 480 patients (286 male and 184 female patients) from three centres, and their data were used to investigate the prevalence of sarcopenia and evaluate the value of L3-SMI for predicting the prognosis and complications of cirrhosis. RESULTS: Age and sex had the greatest effects on the L3-SMI (P < 0.001). The L3-SMI scores were clearly higher in male patients than in female patients (52.94 ± 8.41 vs. 38.91 ± 5.65 cm2 /m2 , P < 0.001) and sharply declined in subjects aged ≥ 60 years. Based on the mean -1.28 × SD among adults aged < 60 years, the L3-SMI cut-off value for sarcopenia was 44.77 cm2 /m2 in male patients and 32.50 cm2 /m2 in female patients. Using these values, 22.5% of the cirrhotic patients (28.7% of male patients and 11.9% of female patients) were diagnosed with sarcopenia. Compared with non-sarcopenia individuals, sarcopenia patients had lower body mass index (21.28 ± 3.01 vs. 24.09 ± 3.39 kg/m2 , P < 0.001) and serum albumin levels (31.54 ± 5.93 vs. 32.93 ± 5.95 g/L, P = 0.032), longer prothrombin times (16.39 ± 3.05 vs. 15.71 ± 3.20 s, P = 0.049), higher total bilirubin concentrations (41.33 ± 57.38 vs. 32.52 ± 31.48 µmol/L, P = 0.039), worse liver function (Child-Pugh score, 8.05 ± 2.11 vs. 7.32 ± 2.05, P = 0.001), higher prevalence of cirrhosis-related complications (81.82% vs. 62.24%, P < 0.001) and mortality (30.68% vs. 11.22%, P < 0.001). Overall survival was significantly lower in the sarcopenia group [risk ratio (RR) = 2.643, 95% confidence interval (CI) 1.646-4.244, P < 0.001], accompanied with an increased cumulative incidence of ascites (RR = 1.827, 95% CI 1.259-2.651, P = 0.002), spontaneous bacterial peritonitis (RR = 3.331, 95% CI 1.404-7.903, P = 0.006), hepatic encephalopathy (RR = 1.962, 95% CI 1.070-3.600, P = 0.029), and upper gastrointestinal varices (RR = 2.138, 95% CI 1.319-3.466, P = 0.002). Subgroup analysis showed sarcopenia shortened the survival of the patients with Model For End-Stage Liver Disease score > 14 (RR = 4.310, 95% CI 2.091-8.882, P < 0.001) or Child-Pugh C (RR = 3.081, 95% CI 1.516-6.260, P = 0.002). CONCLUSIONS: Sarcopenia is a common comorbidity of cirrhosis and can be used to predict cirrhosis-related complications and the prognosis.


End Stage Liver Disease , Sarcopenia , China/epidemiology , Female , Humans , Liver Cirrhosis/complications , Liver Cirrhosis/diagnosis , Liver Cirrhosis/epidemiology , Male , Prognosis , Sarcopenia/diagnosis , Sarcopenia/epidemiology , Sarcopenia/etiology , Severity of Illness Index
7.
Reproduction ; 156(5): 397-404, 2018 10 15.
Article En | MEDLINE | ID: mdl-30087159

It has been reported that the impaired cytotoxicity of natural killer (NK) cells and abnormal cytokines that are changed by the interaction between ectopic endometrial cells and immune cells is indispensable for the initiation and development of endometriosis (EMS). However, the mechanism of NK cells dysfunction in EMS remains largely unclear. Here, we found that NK cells in peritoneal fluid from women with EMS highly expressed indoleamine 2,3-dioxygenase (IDO). Furthermore, IDO+NK cells possessed lower NKp46 and NKG2D but higher IL-10 than that of IDO-NK. Co-culture with endometrial stromal cells (nESCs) from healthy control or ectopic ESCs (eESCs) from women with EMS led to a significant increase in the IDO level in NK cells from peripheral blood, particularly eESCs, and an anti-TGF-ß neutralizing antibody suppressed these effects in vitro. NK cells co-cultured with ESC more preferentially inhibited the viability of nESCs than eESCs did, and pretreating with 1-methyl-tryptophan (1-MT), an IDO inhibitor, reversed the inhibitory effect of NK cells on eESC viability. These data suggest that ESCs induce IDO+NK cells differentiation partly by TGF-ß, and that IDO further restricts the cytotoxicity of NK cells in response to eESCs, which provides a potential therapeutic strategy for EMS patients, particularly those with a high number of impaired cytotoxic IDO+NK cells.


Endometriosis/immunology , Endometrium/immunology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Killer Cells, Natural/enzymology , Adult , Ascitic Fluid/immunology , Case-Control Studies , Cells, Cultured , Endometrium/cytology , Female , Humans , Middle Aged , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Natural Cytotoxicity Triggering Receptor 1/metabolism , Stromal Cells/immunology , Transforming Growth Factor beta/metabolism , Young Adult
8.
Cell Death Dis ; 9(5): 574, 2018 05 01.
Article En | MEDLINE | ID: mdl-29760378

Endometriosis (EMS) is an estrogen-dependent gynecological disease with a low autophagy level of ectopic endometrial stromal cells (eESCs). Impaired NK cell cytotoxic activity is involved in the clearance obstruction of the ectopic endometrial tissue in the abdominopelvic cavity. Protopanaxadiol (PPD) and protopanaxatriol (PPT) are two metabolites of ginsenosides, which have profound biological functions, such as anti-cancer activities. However, the role and mechanism of ginsenosides and metabolites in endometriosis are completely unknown. Here, we found that the compounds PPD, PPT, ginsenoside-Rg3 (G-Rg3), ginsenoside-Rh2 (G-Rh2), and esculentoside A (EsA) led to significant decreases in the viability of eESCs, particularly PPD (IC50 = 30.64 µM). In vitro and in vivo experiments showed that PPD promoted the expression of progesterone receptor (PR) and downregulated the expression of estrogen receptor α (ERα) in eESCs. Treatment with PPD obviously induced the autophagy of eESCs and reversed the inhibitory effect of estrogen on eESC autophagy. In addition, eESCs pretreated with PPD enhanced the cytotoxic activity of NK cells in response to eESCs. PPD decreased the numbers and suppressed the growth of ectopic lesions in a mouse EMS model. These results suggest that PPD plays a role in anti-EMS activation, possibly by restricting estrogen-mediated autophagy regulation and enhancing the cytotoxicity of NK cells. This result provides a scientific basis for potential therapeutic strategies to treat EMS by PPD or further structural modification.


Autophagy/drug effects , Endometriosis/immunology , Endometrium/immunology , Ginsenosides/pharmacology , Killer Cells, Natural/immunology , Receptors, Estrogen/immunology , Sapogenins/pharmacology , Autophagy/immunology , Endometriosis/drug therapy , Endometriosis/pathology , Endometrium/pathology , Female , Humans , Killer Cells, Natural/pathology , Stromal Cells/immunology , Stromal Cells/pathology
9.
Tumour Biol ; 39(3): 1010428317695971, 2017 Mar.
Article En | MEDLINE | ID: mdl-28347229

The aim of this study was to investigate the role of G-protein signaling modulator 2 in the carcinogenesis and progression of hepatocellular carcinoma. We previously showed that G-protein signaling modulator 2 was upregulated in hepatitis B virus-related hepatocellular carcinoma tissues through a hierarchical clustering analysis. With this study, we first assessed the expression pattern of G-protein signaling modulator 2 in hepatocellular carcinoma specimens and adjacent noncancerous tissues; clinical data were analyzed, along survival times, utilizing the Kaplan-Meier method. Moreover, the functions of G-protein signaling modulator 2 were examined using small-interfering RNAs in vitro. The results showed that G-protein signaling modulator 2 was clearly overexpressed in hepatocellular carcinoma tissues and cell lines and that the G-protein signaling modulator 2 expression level was related to tumor size and hepatitis B virus infection. Furthermore, G-protein signaling modulator 2 knockdown studies suggested that G-protein signaling modulator 2 accelerates cell growth, cell cycle, migration, and invasion and inhibits apoptosis, acting as an oncogene in hepatocellular carcinoma. Western blotting indicated that silencing of G-protein signaling modulator 2 in HepG2 and SMMC-7721 cells increased the expression levels of Bax, caspase-3, and E-cadherin, while notably suppressing the cyclin-dependent kinase 4, cyclin-dependent kinase 6, CyclinD1, Snail1, Vimentin, and matrix metallopeptidase 9 expression levels, compared with that in the control groups. In addition, we found that G-protein signaling modulator 2 can affect the expression of key proteins involved in protein kinase B activation. In conclusion, high expression of G-protein signaling modulator 2 was involved in the pathological processes of hepatocellular carcinoma through activation of the phosphatidylinositol 3-kinase/protein kinase B signaling pathway, which may provide an attractive potential diagnostic biomarker and therapeutic target for treatment of hepatocellular carcinoma.


Carcinoma, Hepatocellular/genetics , Intracellular Signaling Peptides and Proteins/biosynthesis , Liver Neoplasms/genetics , Neoplasm Proteins/biosynthesis , Adult , Aged , Apoptosis/genetics , Carcinoma, Hepatocellular/pathology , Cell Cycle/genetics , Cell Movement/genetics , Cell Proliferation/genetics , Female , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Liver Neoplasms/pathology , Male , Middle Aged , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Metastasis , Neoplasm Proteins/genetics , Phosphatidylinositol 3-Kinase/genetics , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction
10.
Oncol Lett ; 14(6): 7483-7488, 2017 Dec.
Article En | MEDLINE | ID: mdl-29344192

Our previous study demonstrated that thymic stromal lymphopoietin (TSLP) secreted by cervical cancer cells promotes angiogenesis and recruitment, and regulates the function of eosinophils (EOS). However, the function of TSLP in the crosstalk between EOS and vascular endothelial cells in cancer lesions remains unknown. The aim of the present study was to investigate the effect of EOS caused by TSLP in in vitro angiogenesis of human umbilical vein endothelial cells (HUVECs). The results of the present study revealed that recombinant human TSLP protein (rhTSLP) increased the secretion of vascular endothelial growth factor (VEGF), but not fibroblast growth factors, in HL-60-eosinophils (HL-60E). Compared with cervical cancer cells (HeLa or CasKi cells) or HL-60E alone, there were increased levels of interleukin (IL)-8 and VEGF in the co-culture system between cervical cancer cells, and HL-60E cells. This effect was strengthened by rhTSLP, but inhibited by inhibiting the TSLP signal with anti-human TSLP or TSLP receptor neutralizing antibodies. The results of the tube formation assays revealed that treatment with the supernatant from cervical cancer cells and/or HL-60E resulted in an increase in angiogenesis in HUVECs, which could be decreased by TSLP or TSLPR inhibitors. The results of the present study suggested that TSLP derived of cervical cancer cells may indirectly stimulate angiogenesis of HUVECs, by upregulating IL-8 and VEGF production, in a co-culture model between cervical cancer cells and EOS, therefore promoting the development of cervical cancer.

11.
Reproduction ; 152(6): 673-682, 2016 12.
Article En | MEDLINE | ID: mdl-27624484

Macrophages play an important role in the origin and development of endometriosis. Estrogen promoted the growth of decidual stromal cells (DSCs) by downregulating the level of interleukin (IL)-24. The aim of this study was to clarify the role and mechanism of IL-24 and its receptors in the regulation of biological functions of endometrial stromal cells (ESCs) during endometriosis. The level of IL-24 and its receptors in endometrium was measured by immunohistochemistry. In vitro analysis was used to measure the level of IL-24 and receptors and the biological behaviors of ESCs. Here, we found that the expression of IL-24 and its receptors (IL-20R1 and IL-20R2) in control endometrium was significantly higher than that in eutopic and ectopic endometrium of women with endometriosis. Recombinant human IL-24 (rhIL-24) significantly inhibited the viability of ESCs in a dosage-dependent manner. Conversely, blocking IL-24 with anti-IL-24 neutralizing antibody promoted ESCs viability. In addition, rhIL-24 could downregulate the invasiveness of ESCs in vitro After co-culture, macrophages markedly reduced the expression of IL-24 and IL-20R1 in ESCs, but not IL-22R1. Moreover, macrophages significantly restricted the inhibitory effect of IL-24 on the viability, invasion, the proliferation relative gene Ki-67, proliferating cell nuclear antigen (PCNA) and cyclooxygenase2 (COX-2), and the stimulatory effect on the tumor metastasis suppressor gene CD82 in ESCs. These results indicate that the abnormally low level of IL-24 in ESCs possibly induced by macrophages may lead to the enhancement of ESCs' proliferation and invasiveness and contribute to the development of endometriosis.


Cell Movement , Endometriosis/pathology , Endometrium/pathology , Interleukins/antagonists & inhibitors , Macrophages/pathology , Stromal Cells/pathology , Adult , Cell Proliferation , Coculture Techniques , Endometriosis/metabolism , Endometrium/metabolism , Female , Humans , Interleukins/metabolism , Macrophages/metabolism , Signal Transduction , Stromal Cells/metabolism , Young Adult
12.
Am J Transl Res ; 8(4): 1708-18, 2016.
Article En | MEDLINE | ID: mdl-27186294

Ginseng and its components exert various biological effects, including antioxidant, anti-carcinogenic, anti-mutagenic, and antitumor activity. Ginsenosides are the main biological components of ginseng. Protopanaxadiol (PPD) and protopanaxatriol (PPT) are two metabolites of ginsenosides. However, the difference between these compounds in anti-lung cancer is unclear. The present study aimed to evaluate the antitumor activity of PPD, PPT, Ginsenosides-Rg3 (G-Rg3) and Ginsenosides-Rh2 (G-Rh2) in lung cancer cell. After treatment with cisplatin, PPD, PPT, G-Rg3 or G-Rh2, the viability, apoptosis level and invasiveness of lung cell lines (A549 cell, a lung adenocarcinoma cell line and SK-MES-1 cell, a lung squamous cell line) in vitro were analyzed by Cell Counting Kit-8 (CCK8), Annexin V/PI apoptosis and Matrigel invasion assays, respectively. Here we found that all these compounds led to significant decreases of viability and invasiveness and an obvious increase of apoptosis of A549 and SK-MES-1 cells. Among these, the viability of SK-MES-1 cell treated with PPT was decreased to 66.8%, and this effect was closest to Cisplatin. G-Rg3 had the highest stimulatory effect on apoptosis, and PTT had the highest inhibitory effect on cell invasiveness in A549 and SK-MES-1 cells. These results indicate that both ginsenosides and two metabolites have antitumor activity on lung cancer cell in vitro. However, PPT is more powerful for inhibiting the viability and invasiveness of lung cancer cell, especially lung squamous cell. G-Rg3 has the best pro-apoptosis effects. This study provides a scientific basis for potential therapeutic strategies targeted to lung cancer by further structure modification.

13.
Reproduction ; 152(2): 151-60, 2016 08.
Article En | MEDLINE | ID: mdl-27190213

Endometriosis (EMS) is associated with an abnormal immune response to endometrial cells, which can facilitate the implantation and proliferation of ectopic endometrial tissues. It has been reported that human endometrial stromal cells (ESCs) express interleukin (IL)15. The aim of our study was to elucidate whether or not IL15 regulates the cross talk between ESCs and natural killer (NK) cells in the endometriotic milieu and, if so, how this regulation occurs. The ESC behaviors in vitro were verified by Cell Counting Kit-8 (CCK-8), Annexin/PI, and Matrigel invasion assays, respectively. To imitate the local immune microenvironment, the co-culture system between ESCs and NK cells was constructed. The effect of IL15 on NK cells in the co-culture unit was investigated by flow cytometry (FCM). In this study, we found that ectopic endometrium from patients with EMS highly expressed IL15. Rapamycin, an autophagy inducer, decreased the level of IL15 receptors (i.e. IL15Rα and IL2Rß). IL15 inhibits apoptosis and promotes the invasiveness, viability, and proliferation of ESCs. Meanwhile, a co-culture with ESCs led to a decrease in CD16 on NK cells. In the co-culture system, IL15 treatment downregulated the levels of Granzyme B and IFN-γ in CD16(+)NK cells, NKG2D in CD56(dim)CD16(-)NK cells, and NKP44 in CD56(bright)CD16(-)NK cells. On the one hand, these results indicated that IL15 derived from ESCs directly stimulates the growth and invasion of ESCs. On the other hand, IL15 may help the immune escape of ESCs by suppressing the cytotoxic activity of NK cells in the ectopic milieu, thereby facilitating the progression of EMS.


Endometriosis/pathology , Endometrium/pathology , Interleukin-15/metabolism , Killer Cells, Natural/pathology , Stromal Cells/pathology , Adult , Case-Control Studies , Cell Proliferation , Cells, Cultured , Coculture Techniques , Down-Regulation , Endometriosis/metabolism , Endometrium/metabolism , Female , Humans , Killer Cells, Natural/metabolism , Middle Aged , Stromal Cells/metabolism
14.
Am J Transl Res ; 7(10): 1782-97, 2015.
Article En | MEDLINE | ID: mdl-26692924

Our previous work has demonstrated that interleukin-22 (IL-22) enhances the invasiveness of endometrial stromal cells (ESCs) of adenomyosis in an autocrine manner. In the present study, we further investigated whether IL-22 mediated crosstalk between vascular endothelial cells (VECs) and ESCs in vitro. Here we found that VECs in ectopic lesion from women with adenomyosis highly expressed IL-22 receptors IL-22R1 and IL-10R2. Both recombinant human IL-22 (rhIL-22) and IL-22 from ESCs increased IL-22R1 and IL-10R2 expression on human umbilical vein endothelial cells (HUVECs). Treatment with rhIL-22 led to an elevation of HUVECs viability, but did not influence HUVECs apoptosis. In contrast, anti-human IL-22 neutralizing antibody (α-IL-22) inhibited HUVECs viability induced by supernatants of ESCs. Stimulation with rhIL-22 or ESCs up-regulated CD105 expression on HUVECs and promoted angiogenesis, and α-IL-22 could reverse these effect induced by ESC. Compared to non-treated HUVECs, HUVECs educated by rh-IL-22 or ESCs could further up-regulate Ki-67 and proliferating cell nuclear antigen (PCNA) expression, and down-regulate Fas ligand (FasL) expression in ESCs. However, these effects induced by ESC-educated HUVECs were inhibited by α-IL-22. These results suggest that IL-22 derived from ESC promotes IL-22 receptors expression and enhances the viability, activation and angiogenesis of HUVEC. In turn, the educated HUVEC may further stimulate proliferation and restricts apoptosis of ESC. The integral effect may contribute to the progress of adenomyosis. Blocking IL-22 can disturb crosstalk between ESC and VEC mediated by IL-22, suggesting that blocking IL-22 may be a potential treatment strategy for adenomyosis.

15.
Am J Cancer Res ; 5(10): 3072-84, 2015.
Article En | MEDLINE | ID: mdl-26693060

Cervical cancer is often associated with hypoxia and many kinds of chemokines. But the relationship and role of hypoxia and Chemokine (C-C motif) ligand 17 (CCL17) in cervical cancer are still unknown. Here, we found that CCL17 was high expressed in cervical cancer. HeLa and SiHa cells could secrete CCL17 in a time-dependent manner. Hypoxia increased expression of CCL17 receptor (CCR4) on HeLa and SiHa cells. Treatment with recombination human CCL17 (rhCCL17) led to an elevation of cell proliferation in HeLa and SiHa cells in a dose-dependent manner. In contrast, blocking CCL17 with anti-human CCL17 neutralizing antibody (α-CCL17) played an oppose effect. However, rhCCL17 had no effect on apoptosis in cervical cancer cells. Further analysis showed that hypoxia promoted the proliferation of HeLa and SiHa cells, and these effects could be reversed by α-CCL17. Stimulation with the inhibitor for c-Jun N-terminal kinase (JNK) or signal transducers and activator of transcription 5 (STAT5) signal pathway not only directly decreased the proliferation of HeLa and SiHa cells, but also abrogated the stimulatory effect of rhCCL17 on the proliferation of HeLa and SiHa cells. These results suggest that a high level of CCL17 in cervical cancer lesions is an important regulator in the proliferation of cervical cancer cells through JNK and STAT5 signaling pathways. In this process, hypoxia magnifies this effect by up-regulating CCR4 expression and strengthening the interaction of CCL17/CCR4.

16.
Oncol Rep ; 34(6): 3007-16, 2015 Dec.
Article En | MEDLINE | ID: mdl-26398902

Receptor activator for nuclear factor κB ligand (RANKL) is a member of the tumor necrosis factor (TNF) family. The interaction between RANKL and its receptor RANK plays an important role in the development and function of diverse tissues. However, the expression and role of RANKL in cervical cancer are still unknown. In the present study, we found that RANKL and RANK were highly co-expressed in cervical cancer. HeLa and SiHa cells secreted soluble RANKL (sRANKL), expressed member RANKL (mRANKL) and RANK. Recombinant human RANKL protein had no effect on the viability of HeLa and SiHa cells. Yet, blocking RANKL with an anti-human RANKL neutralizing antibody (α-RANKL) or recombinant human osteoprotegrin (OPG) protein resulted in the downregulation of Ki-67 and B-cell lymphoma 2 (Bcl-2) expression and an increase in Fas and Fas ligand (FasL) expression, as well as a high level of viability and a low level of apoptosis in the HeLa and SiHa cells. In addition, α-RANKL led to a decrease in IL-8 secretion. Recombinant human IL-8 protein reversed the effect of α-RANKL on the expression of proliferation- and apoptosis­related molecules, and proliferation and apoptosis in the HeLa and SiHa cells. The present study suggests that a high level of mRANKL/RANK expression in cervical cancer lesions plays an important role in the rapid growth of cervical cancer cells possibly through strengthening the dialogue between cervical cancer cells and regulation of IL-8 secretion, which may be a possible target for cervical cancer therapy.


Interleukin-8/biosynthesis , RANK Ligand/genetics , Receptor Activator of Nuclear Factor-kappa B/genetics , Uterine Cervical Neoplasms/genetics , Antibodies, Neutralizing/administration & dosage , Apoptosis/drug effects , Cell Proliferation/genetics , Cell Survival/drug effects , Fas Ligand Protein/biosynthesis , Female , Gene Expression Regulation, Neoplastic , HeLa Cells , Humans , Interleukin-8/genetics , Osteoprotegerin/administration & dosage , Proto-Oncogene Proteins c-bcl-2/biosynthesis , RANK Ligand/antagonists & inhibitors , RANK Ligand/biosynthesis , Receptor Activator of Nuclear Factor-kappa B/biosynthesis , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Uterine Cervical Neoplasms/pathology
17.
Cancer Lett ; 364(2): 106-17, 2015 Aug 10.
Article En | MEDLINE | ID: mdl-25979231

Cervical cancer is often associated with eosinophil (EOS) infiltration, but the source and the role of EOS are still largely unknown. Our previous work has established that thymic stromal lymphopoietin (TSLP) can stimulate the growth of cervical cancer cell in an autocrine manner. Here, we report that EOS infiltration of the lesion site increased gradually with the progression of cervical cancer. The increase in TSLP secretion in HeLa and SiHa cells induced by hypoxia led to a high level of chemokine CCL17 production by HeLa and SiHa cells, and recruited more EOS to the cancer lesion. In addition, TSLP derived from HeLa and SiHa cells promoted proliferation, up-regulated the levels of anti-inflammatory cytokines (IL-10, IL-4, IL-5 and IL-13), and decreased the expression of CD80 and CD86 of EOS. Such educated EOS significantly promoted proliferation and restricted the apoptosis of cervical cancer cells, which was associated with the up-regulation of Ki-67, PCNA and Bcl-2, and the down-regulation of Fas and FasL in HeLa and SiHa cells. These results suggest that a high level of TSLP in cancer lesions mediated by hypoxia is an important regulator of the progression of cervical cancer by recruiting and licensing tumor-associated EOS to promote the growth of the cervical cancer cell itself. This provides a scientific basis on which potential therapeutic strategies could be targeted to cervical cancer, especially for patients with massive infiltrations of EOS.


Cytokines/immunology , Eosinophils/immunology , Uterine Cervical Neoplasms/immunology , Adult , Apoptosis/physiology , Cell Communication/physiology , Cell Growth Processes/physiology , Cell Hypoxia/physiology , Cytokines/biosynthesis , Cytokines/metabolism , Disease Progression , Eosinophils/pathology , Female , HeLa Cells , Humans , Middle Aged , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Thymic Stromal Lymphopoietin
18.
Acta Crystallogr Sect E Struct Rep Online ; 70(Pt 6): o671, 2014 Jun 01.
Article En | MEDLINE | ID: mdl-24940252

The title compound, C18H24O2, was isolated from the leaves extract of Ficus carica L. The cyclo-hexane ring displays a chair conformation whereas the cyclo-hexa-1,4-diene ring adopts a flattened boat conformation with methyl C atoms at the prow and stern. In the crystal, mol-ecules are linked by weak C-H⋯O hydrogen bonds into supra-molecular chains propagated along the b-axis direction.

...