Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 186
Filter
1.
Nat Prod Res ; : 1-9, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105448

ABSTRACT

To reveal the potential mechanism of the effect of Chinese Herbal Medicine Fuzi on Aplastic anaemia (AA) according to the network pharmacology approach and molecular docking. According to Ultra High Performance Liquid Chromatography Mass Spectrometry (UHPLC-MS/MS), 146 chemical ingredients of Fuzi were obtained. By SwissADME online system analysis, a total of 55 compounds such as Magnoflorine, Scutellarein, Luteolin and Gingerol may be the main active components of Fuzi and 145 common targets related to AA were predicted. 17 targets such as MAPK1, AKT1 and GRB2 were considered as hub targets. KEGG and GO enrichment analysis obtained 122 signalling pathways and 950 remarkable results. These results suggested that Fuzi exerted pharmacological effects on AA mainly by regulating PI3K-Akt, MAPK and JAK-STAT signalling pathways and epithelial cell proliferation, cell differentiation, regulate energy production and other biological processes. Meanwhile, molecular docking results showed that the hub targets had good binding ability with the main active ingredients.

2.
Langmuir ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115326

ABSTRACT

Silicon (Si), as an ideal anode component for lithium-ion batteries, is susceptible to substantial volume changes, leading to pulverization and excessive electrolyte consumption, ultimately resulting in a rapid decline in the cycle stability. Herein, a new sodium carboxymethyl cellulose-epichlorohydrin (CMC-ECH) binder featuring a three-dimensional (3D) network cross-linked structure is synthesized by a simple ring-opening reaction, which can effectively bond the Si anode through abundant covalent and hydrogen bonds to mitigate its pulverization. Benefitting from the merits of the CMC-ECH binder, the electrochemical performance is significantly enhanced compared to the CMC binder. The CMC-ECH binder is applied to Si anodes, a specific capacity of 1054.2 mAh g-1 can be maintained at 0.2 C following 200 cycles under an elevated Si mass loading of around 1.0 mg cm-2, and the corresponding capacity retention is 65.6%. In the case of the LiFePO4//Si@CMC-ECH full battery, the cycle stability exhibits a substantial enhancement compared with the LiFePO4//Si@CMC full battery. Furthermore, the CMC-ECH binder demonstrates compatibility with micron-Si anode materials. Based on the above, we have successfully developed a facilely prepared water-based CMC-ECH binder that is suitable for Si and micron-Si anodes in lithium-ion batteries.

3.
Biochem Pharmacol ; 229: 116476, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39128588

ABSTRACT

Fibronectin type III domain-containing protein 5 (FNDC5) exerts potential anti-arrhythmic effects. However, the function and mechanism of FNDC5 in diabetes-associated atrial fibrillation (AF) remain unknown. In this study, bioinformatics analysis, in vivo and in vitro experiments were conducted to explore the alteration and role of FNDC5 in diabetes-related atrial remodeling and AF susceptibility. RNA sequencing data from atrial samples of permanent AF patients and diabetic mice exhibited significantly decreased FNDC5 at the transcriptional level, which was in line with the protein expression in diabetic mice as well as high glucose and palmitic acid (HG+PA) injured atrial myocytes. Diabetic mice exhibited adverse atrial remodeling and increased AF inducibility. Moreover, reduced atrial FNDC5 was accompanied with exacerbated NOD-like receptor pyrin domain containing 3 (NLRP3) activation and disturbed mitochondrial fission and fusion processes, as evidenced by decreased expressions of optic atrophy 1 (OPA-1), mitofusin (MFN-1, MFN-2) and increased phosphorylation of dynamin-related protein 1 (Ser616). These effects were validated in HG+PA-treated atrial myocytes. Critically, FNDC5 overexpression remarkably enhanced cellular antioxidant capacity by upregulating the expressions of superoxide dismutase (SOD1, SOD2) level. In addition, HG+PA-induced mitochondrial dysfunction was ameliorated by FNDC5 overexpression as evidenced by improved mitochondrial dynamics and membrane potential. Moreover, NLRP3 inflammasome-mediated inflammation was reduced by FNDC5 overexpression, and AMPK signaling might serve as the key down-stream effector. The present study demonstrated that reduced atrial FNDC5-AMPK signaling contributed to the pathogenesis of diabetes- associated AF by impairing mitochondrial dynamics and activating the NLRP3 inflammasome. These findings provide promising therapeutic avenues for diabetes-associated AF.

5.
Cell Signal ; 122: 111322, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39067835

ABSTRACT

Atrial fibrillation (AF) emerges as a critical complication following acute myocardial infarction (AMI) and is associated with a significant increased risk of heart failure, stroke and mortality. Ataxia telangiectasia mutated (ATM), a key player in DNA damage repair (DDR), has been implicated in multiple cardiovascular conditions, however, its involvement in the development of AF following AMI remains unexplored. This study seeks to clarify the contribution of the ATM/p53 pathway in the onset of AF post-AMI and to investigate the underlying mechanisms. The rat model of AMI was established by ligating left anterior descending coronary artery in the presence or absence of Ku55933 (an ATM kinase inhibitor, 5 mg/kg/d) treatment. Rats receiving Ku55933 were further divided into the early administration group (administered on days 1, 2, 4, and 7 post-AMI) and the late administration group (administered on days 8, 9, 11 and 14 post-AMI). RNA-sequencing was performed 14 days post-operation. In vitro, H2O2-challenged HL-1 atrial muscle cells were utilized to evaluate the potential effects of different ATM inhibition schemes, including earlier, middle, and late periods of intervention. Fourteen days post-AMI injury, the animals exhibited significantly increased AF inducibility, exacerbated atrial electrical/structural remodeling, reduced ventricular function and exacerbated atrial DNA damage, as evidenced by enhanced ATM/p53 signaling as well as γH2AX level. These effects were partially consistent with the enrichment results of bioinformatics analysis. Notably, the deleterious effects were ameliorated by early, but not late, administration of Ku55933. Mechanistically, inhibition of ATM signaling successfully suppressed atrial NLRP3 inflammasome-mediated pyroptotic pathway. Additionally, the results were validated in the in vitro experiments demonstrating that early inhibition of Ku55933 not only attenuated cellular ATM/p53 signaling, but also mitigated inflammatory response by reducing NLRP3 activation. Collectively, hyperactivation of ATM/p53 contributed to the pathogenesis of AF following AMI. Early intervention with ATM inhibitors substantially mitigated AF susceptibility and atrial electrical/structural remodeling, highlighting a novel therapeutic avenue against cardiac arrhythmia following AMI.

6.
Heliyon ; 10(11): e32064, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38867998

ABSTRACT

Background: Traditional working procedures requires a lot of clinical processes and processing time. Methods: The orthodontic metal appliances were made by applying oral scanners, digital images, computer-aided design and computer-aided manufacturing (CAD-CAM) printers. Results: The computer digital technology simplified the manufacturing process for dental appliances and shorten the duration for clinical operation and technical processing. Conclusions: The technique described in this paper can guarantee the accuracy of orthodontic appliances and bring revolution the field. Clinical significance: The CAD-CAM technology provides a fully digital workflow for manufacturing metal orthodontic appliances, which saves a considerable amount of labor and material costs, and significantly reduces heavy metal pollution in the working environment of dental technicians.

7.
J Cell Mol Med ; 28(12): e18407, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38894630

ABSTRACT

Chronic intermittent hypoxia (CIH) is associated with an increased risk of cardiovascular diseases. Previously, we have shown that berberine (BBR) is a potential cardioprotective agent. However, its effect and mechanism on CIH-induced cardiomyopathy remain uncovered. This study was designed to determine the effects of BBR against CIH-induced cardiac damage and to explore the molecular mechanisms. Mice were exposed to 5 weeks of CIH with or without the treatment of BBR and adeno-associated virus 9 (AAV9) carrying SIRT6 or SIRT6-specific short hairpin RNA. The effect of BBR was evaluated by echocardiography, histological analysis and western blot analysis. CIH caused the inactivation of myocardial SIRT6 and AMPK-FOXO3a signalling. BBR dose-dependently ameliorated cardiac injury in CIH-induced mice, as evidenced by increased cardiac function and decreased fibrosis. Notably, SIRT6 overexpression mimicked these beneficial effects, whereas infection with recombinant AAV9 carrying SIRT6-specific short hairpin RNA abrogated them. Mechanistically, BBR reduced oxidative stress damage and preserved mitochondrial function via activating SIRT6-AMPK-FOXO3a signalling, enhancing mitochondrial biogenesis as well as PINK1-Parkin-mediated mitophagy. Taken together, these data demonstrate that SIRT6 activation protects against the pathogenesis of CIH-induced cardiac dysfunction. BBR attenuates CIH-induced myocardial injury by improving mitochondrial biogenesis and PINK1-Parkin-dependent mitophagy via the SIRT6-AMPK-FOXO3a signalling pathway.


Subject(s)
Berberine , Forkhead Box Protein O3 , Hypoxia , Signal Transduction , Sirtuins , Berberine/pharmacology , Berberine/therapeutic use , Animals , Sirtuins/metabolism , Sirtuins/genetics , Signal Transduction/drug effects , Hypoxia/metabolism , Mice , Male , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Oxidative Stress/drug effects , Mice, Inbred C57BL , AMP-Activated Protein Kinases/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Mitophagy/drug effects , Ventricular Remodeling/drug effects , Disease Models, Animal
8.
Free Radic Biol Med ; 210: 25-41, 2024 01.
Article in English | MEDLINE | ID: mdl-37956909

ABSTRACT

Metabolic reprogramming of vascular smooth muscle cell (VSMC) plays a critical role in the pathogenesis of thoracic aortic dissection (TAD). Previous researches have mainly focused on dysregulation of fatty acid or glucose metabolism, while the impact of amino acids catabolic disorder in VSMCs during the development of TAD remains elusive. Here, we identified branched-chain amino acid (BCAA) catabolic defect as a metabolic hallmark of TAD. The bioinformatics analysis and data from human aorta revealed impaired BCAA catabolism in TAD individuals. This was accompanied by upregulated branched-chain α-ketoacid dehydrogenase kinase (BCKDK) expression and BCKD E1 subunit alpha (BCKDHA) phosphorylation, enhanced vascular inflammation, and hyperactivation of mTOR signaling. Further in vivo experiments demonstrated that inhibition of BCKDK with BT2 (a BCKDK allosteric inhibitor) treatment dephosphorylated BCKDHA and re-activated BCAA catabolism, attenuated VSMCs phenotypic switching, alleviated aortic remodeling, mitochondrial reactive oxygen species (ROS) damage and vascular inflammation. Additionally, the beneficial actions of BT2 were validated in a TNF-α challenged murine VSMC cell line. Meanwhile, rapamycin conferred similar beneficial effects against VSMC phenotypic switching, cellular ROS damage as well as inflammatory response. However, co-treatment with MHY1485 (a classic mTOR activator) reversed the beneficial effects of BT2 by reactivating mTOR signaling. Taken together, the in vivo and in vitro evidence showed that impairment of BCAA catabolism resulted in aortic accumulation of BCAA and further caused VSMC phenotypic switching, mitochondrial ROS damage and inflammatory response via mTOR hyperactivation. BCKDK and mTOR signaling may serve as the potential drug targets for the prevention and treatment of TAD.


Subject(s)
Dissection, Thoracic Aorta , Muscle, Smooth, Vascular , Animals , Humans , Mice , Amino Acids, Branched-Chain/metabolism , Inflammation/pathology , Muscle, Smooth, Vascular/metabolism , Reactive Oxygen Species , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
9.
Free Radic Biol Med ; 210: 195-211, 2024 01.
Article in English | MEDLINE | ID: mdl-37979891

ABSTRACT

Sepsis is a major health threat and often results in heart failure. Growth arrest-specific gene 6 (GAS6), a 75-kDa vitamin K-dependent protein, participates in immune regulation and inflammation through binding to AXL (the TAM receptor family). This study was designed to examine the myocardial regulatory role of GAS6 in sepsis. Serum GAS6 levels were increased in septic patients and mice while myocardial GAS6 levels were decreased in septic mice. Single-cell RNA sequencing further revealed a decline in GAS6 levels of nearly all cell clusters including cardiomyocytes. GAS6 overexpression via adeno-associated virus 9 (AAV9) overtly improved cardiac dysfunction in cecum ligation and puncture (CLP)-challenged mice, along with alleviated mitochondrial injury, endoplasmic reticulum stress, oxidative stress, and apoptosis. However, GAS6-elicited beneficial effects were removed by GAS6 knockout. The in vitro study was similar to these findings. Our data also noted a downstream effector role for NLRP3 in GAS6-initiated myocardial response. GAS6 knockout led to elevated levels of NLRP3, the effect of which was reconciled by GAS6 overexpression. Taken together, these results revealed the therapeutical potential of targeting GAS6/AXL-NLRP3 signaling in the management of heart anomalies in sepsis.


Subject(s)
Heart Diseases , Sepsis , Animals , Humans , Mice , Heart Diseases/metabolism , Inflammasomes , Myocardium/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Sepsis/complications , Sepsis/genetics
10.
Mol Med Rep ; 28(6)2023 Dec.
Article in English | MEDLINE | ID: mdl-37921064

ABSTRACT

Subacute progressive neuropsychiatric symptoms with cognitive and motor impairment and autoimmune seizures are some of the typical symptoms of anti­N­methyl­D­aspartate receptor (anti­NMDAR) encephalitis. The mechanisms underlying this disease are yet to be elucidated, which could be partly attributed to the lack of appropriate animal models. The present study aimed to establish an active immune mouse model of anti­NMDAR encephalitis. Mice were immunized with the extracellular segment of the NMDA1 protein, then subjected to open­field and novel object recognition experiments. Plasma was collected after euthanasia on day 30 after immunization and anti­NMDA1 antibodies were detected using ELISA. Furthermore, brain slices were analyzed to measure postsynaptic density protein 95 (PSD­95) and NMDA1 expression. Western blot analysis of NMDA1 and PSD­95 protein expression levels in the hippocampus was also performed. In addition, protein expression levels of PSD­95 and NMDA1 in mouse neuronal HT­22 cells were evaluated. Compared with controls, mice immunized with NMDA1 exhibited anxiety, depression and memory impairment. Moreover, high anti­NMDA1 antibody titers were detected with ELISA and the levels of anti­NMDA1 antibody reduced postsynaptic NMDA1 protein density in the mouse hippocampus. These findings demonstrated the successful construction of a novel mouse model of anti­NMDAR encephalitis by actively immunizing the mice with the extracellular segment of the NMDA1 protein. This model may be useful for studying the pathogenesis and drug treatment of anti­NMDAR encephalitis in the future.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Mice , Animals , Vaccination , Receptors, N-Methyl-D-Aspartate , Disks Large Homolog 4 Protein , Apolipoproteins E
11.
Clin Nucl Med ; 48(10): e496-e499, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37682619

ABSTRACT

ABSTRACT: A 56-year-old man presented with a 2-month history of a mass in the right epididymo-testicular region, which exhibited heterogeneous high avidity for 18F-FDG on PET/CT. Malignant tumor was highly suspected, leading to subsequent right orchiectomy and epididymectomy. Histopathological examination revealed the presence of characteristic Michaelis-Gutmann bodies within von Hansemann macrophages, confirming the diagnosis of malacoplakia.


Subject(s)
Fluorodeoxyglucose F18 , Malacoplakia , Male , Humans , Middle Aged , Positron Emission Tomography Computed Tomography , Malacoplakia/diagnostic imaging , Testis/diagnostic imaging , Positron-Emission Tomography
12.
Mol Metab ; 78: 101812, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37777009

ABSTRACT

OBJECTIVE: Sialic acid is a terminal monosaccharide of glycans in glycoproteins and glycolipids, and its derivation from glucose is regulated by the rate-limiting enzyme UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE). Although the glycans on key endogenous hepatic proteins governing glucose metabolism are sialylated, how sialic acid synthesis and sialylation in the liver influence glucose homeostasis is unknown. Studies were designed to fill this knowledge gap. METHODS: To decrease the production of sialic acid and sialylation in hepatocytes, a hepatocyte-specific GNE knockdown mouse model was generated, and systemic glucose metabolism, hepatic insulin signaling and glucagon signaling were evaluated in vivo or in primary hepatocytes. Peripheral insulin sensitivity was also assessed. Furthermore, the mechanisms by which sialylation in the liver influences hepatic insulin signaling and glucagon signaling and peripheral insulin sensitivity were identified. RESULTS: Liver GNE deletion in mice caused an impairment of insulin suppression of hepatic glucose production. This was due to a decrease in the sialylation of hepatic insulin receptors (IR) and a decline in IR abundance due to exaggerated degradation through the Eph receptor B4. Hepatic GNE deficiency also caused a blunting of hepatic glucagon receptor (GCGR) function which was related to a decline in its sialylation and affinity for glucagon. An accompanying upregulation of hepatic FGF21 production caused an enhancement of skeletal muscle glucose disposal that led to an overall increase in glucose tolerance and insulin sensitivity. CONCLUSION: These collective observations reveal that hepatic sialic acid synthesis and sialylation modulate glucose homeostasis in both the liver and skeletal muscle. By interrogating how hepatic sialic acid synthesis influences glucose control mechanisms in the liver, a new metabolic cycle has been identified in which a key constituent of glycans generated from glucose modulates the systemic control of its precursor.


Subject(s)
Insulin Resistance , N-Acetylneuraminic Acid , Mice , Animals , N-Acetylneuraminic Acid/metabolism , Glucagon , Muscle, Skeletal/metabolism , Liver/metabolism , Glucose , Insulin , Homeostasis , Polysaccharides
13.
Nat Commun ; 14(1): 4101, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37491347

ABSTRACT

Hypercholesterolemia and vascular inflammation are key interconnected contributors to the pathogenesis of atherosclerosis. How hypercholesterolemia initiates vascular inflammation is poorly understood. Here we show in male mice that hypercholesterolemia-driven endothelial activation, monocyte recruitment and atherosclerotic lesion formation are promoted by a crosstalk between macrophages and endothelial cells mediated by the cholesterol metabolite 27-hydroxycholesterol (27HC). The pro-atherogenic actions of macrophage-derived 27HC require endothelial estrogen receptor alpha (ERα) and disassociation of the cytoplasmic scaffolding protein septin 11 from ERα, leading to extranuclear ERα- and septin 11-dependent activation of NF-κB. Furthermore, pharmacologic inhibition of cyp27a1, which generates 27HC, affords atheroprotection by reducing endothelial activation and monocyte recruitment. These findings demonstrate cell-to-cell communication by 27HC, and identify a major causal linkage between the hypercholesterolemia and vascular inflammation that partner to promote atherosclerosis. Interventions interrupting this linkage may provide the means to blunt vascular inflammation without impairing host defense to combat the risk of atherosclerotic cardiovascular disease that remains despite lipid-lowering therapies.


Subject(s)
Atherosclerosis , Hypercholesterolemia , Male , Mice , Animals , Estrogen Receptor alpha/metabolism , Hypercholesterolemia/complications , Hypercholesterolemia/metabolism , Endothelial Cells/metabolism , Septins/metabolism , Cholesterol/metabolism , Atherosclerosis/metabolism , Macrophages/metabolism , Signal Transduction , Inflammation/pathology
14.
Oral Dis ; 2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37357358

ABSTRACT

OBJECTIVE: Obesity can affect periodontal tissues and exacerbate periodontitis. Pyroptosis, a newly identified type of inflammatory cell death, is involved in the development of periodontal inflammation. The saturated fatty acid palmitic acid (PA) is elevated in obese patients. The effect of PA on pyroptosis in periodontal ligament cells (PDLCs) and its underlying mechanisms remain unknown. MATERIALS AND METHODS: Human PDLCs were isolated from healthy individuals and cultured for experiments. The effects of PA on PDLC pyroptosis and the underlying mechanisms were examined by transmission electron microscopy, quantitative real-time PCR and western blotting. RESULTS: The morphology of PDLCs in the PA group indicated pyroptotic characteristics, including swollen cells, plasma membrane rupture and changes in subcellular organelles. PA induced inflammatory responses in PDLCs, as indicated by an increase in IL-1ß in the cell culture supernatant. Furthermore, we found that the pyroptosis-related proteins caspase-1, caspase-4 and GSDMD were involved in PA-induced cell death. GSDMD and caspase-4 inhibitors alleviated pyroptotic death of PDLCs. Moreover, PA promoted NF-κB P65 phosphorylation. A NF-κB inhibitor decreased IL-1ß expression and partly rescued cell death induced by PA. CONCLUSION: PA activated the NF-κB pathway and induced the inflammatory response in PDLCs. Caspase-4/GSDMD mediated PDLC pyroptosis induced by PA.

15.
Ying Yong Sheng Tai Xue Bao ; 34(5): 1415-1429, 2023 May.
Article in English | MEDLINE | ID: mdl-37236960

ABSTRACT

Increasingly serious pollution of antibiotic resistance genes (ARGs) caused by the abuse of antibiotics in livestock and poultry industry has raised worldwide concerns. ARGs could spread among various farming environmental media through adsorption, desorption, migration, and also could transfer into human gut microbiome by hori-zontal gene transfer (HGT), posing potential threats to public health. However, the comprehensive review on the pollution patterns, environmental behaviors, and control techniques of ARGs in livestock and poultry environments in view of One Health is still inadequate, resulting in the difficulties in effectively assessing ARGs transmission risk and developing the efficient control strategies. Here, we analyzed the pollution characteristics of typical ARGs in various countries, regions, livestock species, and environmental media, reviewed the critical environmental fate and influencing factors, control strategies, and the shortcomings of current researches about ARGs in the livestock and poultry farming industry combined with One Health philosophy. In particular, we addressed the importance and urgency of identifying the distribution characteristics and environmental process mechanisms of ARGs, and developing green and efficient ARG control means in livestock farming environments. We further proposed gaps and prospects for the future research. It would provide theoretical basis for the research on health risk assessment and technology exploitation of alleviating ARG pollution in livestock farming environment.


Subject(s)
Anti-Bacterial Agents , Poultry , Animals , Humans , Poultry/genetics , Anti-Bacterial Agents/pharmacology , Livestock/genetics , Genes, Bacterial , Drug Resistance, Microbial/genetics , Agriculture
16.
BMC Oral Health ; 23(1): 130, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36890501

ABSTRACT

OBJECTIVES: This study aimed to determine the prevalence and independent risk factors of SDB, and explore its association with malocclusion among 6-11-year-old children in Shanghai, China. METHODS: A cluster sampling procedure was adopted in this cross-sectional study. Pediatric Sleep Questionnaire (PSQ) was applied to evaluate the presence of SDB. Questionnaires including PSQ, medical history, family history, and daily habits/environment were completed by parents under instruction, and oral examinations were implemented by well-trained orthodontists. Multivariable logistic regression was applied to identify independent risk factors for SDB. Chi-square tests and Spearman's Rank Correlation were used to estimate the relationship between SDB and malocclusion. RESULTS: A total of 3433 subjects (1788 males and 1645 females) were included in the study. The SDB prevalence was about 17.7%. Allergic rhinitis (OR 1.39, 95% CI 1.09-1.79), adenotonsillar hypertrophy (OR 2.39, 95% CI 1.82-3.19), paternal snoring (OR 1.97, 95% CI 1.53-2.53), and maternal snoring (OR 1.35, 95% CI 1.05-1.73) were independent risk factors for SDB. The SDB prevalence was higher in children with retrusive mandibles than in proper or excessive ones. No significant difference was observed in the correlation between SDB and lateral facial profile, mandible plane angle, constricted dental arch form, the severity of anterior overjet and overbite, degree of crowding and spacing, and the presence of crossbite and open bite. CONCLUSIONS: The prevalence of SDB in primary students in the Chinese urban population was high and highly associated with mandible retrusion. The independent risk factors included Allergic rhinitis, adenotonsillar hypertrophy, paternal snoring, and maternal snoring. More efforts should be made to enhance public education about SDB and related dental-maxillofacial abnormalities.


Subject(s)
Malocclusion , Sleep Apnea Syndromes , Male , Female , Humans , Child , Snoring/complications , Snoring/epidemiology , Cross-Sectional Studies , China/epidemiology , Sleep Apnea Syndromes/complications , Sleep Apnea Syndromes/epidemiology , Malocclusion/complications , Malocclusion/epidemiology , Risk Factors , Hypertrophy/complications , Surveys and Questionnaires
17.
Protein Pept Lett ; 30(3): 250-259, 2023.
Article in English | MEDLINE | ID: mdl-36734907

ABSTRACT

BACKGROUND: Aloperine (ALO) is an important active component of quinolizidine alkaloids in Sophora flavescens A and Sophora alopecuroides L, and has effective anticancer activity against multiple cancers. However, the influence and mechanism of ALO on migration, invasion, and adhesion in bladder cancer cells remain unclear. OBJECTIVE: The aim of this study is to determine the anticancer effect of ALO on migration, invasion, and adhesion in bladder cancer cells and to investigate its potential TIMP-4-related mechanism. METHODS: Cell viability, cytotoxicity, wound healing, Transwell invasion, cell adhesion, real-time qPCR, western blot, and ELISA assays were performed to analyze the effect of ALO on migration, invasion, and adhesion in bladder cancer 5637 and UM-UC-3 cells. Furthermore, the anti-TIMP-4 antibody was used to explore the potential effect on ALO-inhibited bladder cancer cells. RESULTS: We have found that ALO significantly suppressed migration, invasion, and adhesion in bladder cancer cells. Furthermore, ALO could downregulate the expression of MMP-2 and MMP-9 mRNAs and proteins, and increase the expression of TIMP-4 mRNA and protein. Moreover, the anti- TIMP-4 antibody reversed the prevention of migration, invasion, and adhesion in ALO-treated bladder cancer cells. CONCLUSION: The data in this study suggest that ALO suppressed migration, invasion, and adhesion in bladder cancer cells by upregulating the expression of TIMP-4.


Subject(s)
Quinolizidines , Urinary Bladder Neoplasms , Humans , Quinolizidines/pharmacology , Cell Line, Tumor , Urinary Bladder Neoplasms/drug therapy , Cell Movement
18.
Redox Biol ; 59: 102594, 2023 02.
Article in English | MEDLINE | ID: mdl-36603528

ABSTRACT

The potential coexistence of Alzheimer's disease (AD) and atrial fibrillation (AF) is increasingly common as aging-related diseases. However, little is known about mechanisms responsible for atrial remodeling in AD pathogenesis. α7 nicotinic acetylcholine receptors (α7nAChR) has been shown to have profound effects on mitochondrial oxidative stress in both organ diseases. Here, we investigate the role of α7nAChR in mediating the effects of amyloid-ß (Aß) in cultured mouse atrial cardiomyocytes (HL-1 cells) and AD model mice (APP/PS1). In vitro, apoptosis, oxidative stress and mitochondrial dysfunction induced by Aß long-term (72h) in HL-1 cells were prevented by α-Bungarotoxin(α-BTX), an antagonist of α7nAChR. This cardioprotective effect was due to reinstating Ca2+ mishandling by decreasing the activation of CaMKII and MAPK signaling pathway, especially the oxidation of CaMKII (oxi-CaMKII). In vivo studies demonstrated that targeting knockdown of α7nAChR in cardiomyocytes could ameliorate AF progression in late-stage (12 months) APP/PS1 mice. Moreover, α7nAChR deficiency in cardiomyocytes attenuated APP/PS1-mutant induced atrial remodeling characterized by reducing fibrosis, atrial dilation, conduction dysfunction, and inflammatory mediator activities via suppressing oxi-CaMKII/MAPK/AP-1. Taken together, our findings suggest that diminished α7nAChR could rescue Aß-induced atrial remodeling through oxi-CaMKII/MAPK/AP-1-mediated mitochondrial oxidative stress in atrial cells and AD mice.


Subject(s)
Alzheimer Disease , Atrial Fibrillation , Atrial Remodeling , Animals , Mice , alpha7 Nicotinic Acetylcholine Receptor/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Atrial Fibrillation/genetics , Atrial Fibrillation/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Mitochondria/metabolism , Oxidative Stress , Transcription Factor AP-1/metabolism , Mitogen-Activated Protein Kinases/metabolism
19.
Apoptosis ; 28(3-4): 607-626, 2023 04.
Article in English | MEDLINE | ID: mdl-36708428

ABSTRACT

Ferroptosis contributes to the pathogenesis of atrial fibrillation (AF), although the mechanisms are still largely uncovered. The current study was designed to explore the pharmacological effects of icariin against ethanol-induced atrial remodeling, if any, and the mechanisms involved with a focus on SIRT1 signaling. Excessive ethanol-treated animals were administered with Ferrostatin-1, Erastin or icariin to evaluate the potential effects of icariin or ferroptosis. Then, the underling mechanisms was further explored in the in vitro experiments using HL-1 atrial myocytes. Excessive ethanol administration caused significant atrial damage as evidenced by increased susceptibility to AF, altered atrial conduction pattern, atrial enlargement, and enhanced fibrotic markers. These detrimental effects were reversed by Ferrostatin-1 or icariin treatment, while Erastin co-administration markedly abolished the beneficial actions conferred by icariin. Mechanistically, ethanol-treated atria exhibited markedly up-regulated pro-ferroptotic protein (PTGS2, ACSL4, P53) and suppressed anti-ferroptotic molecules (GPX4, FTH1). Icariin treatment inhibited ethanol-induced atrial ferroptosis by reducing atrial mitochondrial damage, ROS accumulation and iron overload. Interestingly, the in vivo and in vitro data showed that icariin activated atrial SIRT1-Nrf-2-HO-1 signaling pathway, while EX527 not only reversed these effects, but also abolished the therapeutic effects of icariin. Moreover, the stimulatory effects on GPX4, SLC7A11 and the suppressive effects on ACSL4, P53 conferred by icariin were blunted by EX527 treatment. These data demonstrate that ferroptosis plays a causative role in the pathogenesis of ethanol-induced atrial remodeling and susceptibility to AF. Icariin protects against atrial damage by inhibiting ferroptosis via SIRT1 signaling. Its role as a prophylactic/therapeutic drug deserves further clinical study.


Subject(s)
Atrial Fibrillation , Atrial Remodeling , Ferroptosis , Animals , Atrial Fibrillation/chemically induced , Atrial Fibrillation/drug therapy , Apoptosis , Sirtuin 1/genetics , Tumor Suppressor Protein p53 , Ethanol/toxicity
20.
Respir Physiol Neurobiol ; 308: 103980, 2023 02.
Article in English | MEDLINE | ID: mdl-36273780

ABSTRACT

Obstructive sleep apnea (OSA) is a sleep-related breathing disorder characterized by intermittent and recurrent upper airway collapse during sleep that leads to chronic intermittent hypoxia (CIH). The genioglossus (GG) is the largest dilator muscle, which controls the upper airway and plays an important role in OSA pathology. Elucidating its genetic alterations may help identify potential targets for OSA. However, the genetic aspects of the GG in CIH mice remain unclear. Here, we have conducted an RNA sequencing (RNA-Seq) analysis to assess the differentially expressed genes (DEGs) in the GG between CIH mice and normoxia (NOR) mice. A total of 637 DEGs were identified to be dysregulated in CIH mice compared with control mice. Bioinformatics analysis showed that the DEGs were related to various physiological processes, such as the endogenous stimulus responses, cellular component organization and metabolic processes. Extracellular matrix (ECM)-receptor interaction was the top KEGG pathway in the environmental information processing category with high significance and large fold changes. From the gene weight distributions of collagen (Col)-related biological processes (BPs), we found several significant DEGs, such as Col1a1, Col1a2, Mmp2, Col3a1, Col5a1, Fmod, and Col5a2. A PPI network showed that Col1a1 was linked to ECM-receptor interactions, responses to reactive oxygen species (ROS) and Col-related BPs. It was verified in vivo and in vitro that hypoxia can induce excess ROS and reduce Col expression levels. Moreover, we found NAC can effectively scavenge ROS and restore collagen synthesis. These findings contribute to a better understanding of the mechanisms linking OSA and upper airway muscle injury and may help identify potential therapeutic targets.


Subject(s)
Sleep Apnea, Obstructive , Transcriptome , Mice , Animals , Reactive Oxygen Species/metabolism , Hypoxia , Fibromodulin
SELECTION OF CITATIONS
SEARCH DETAIL