Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 45
1.
Wei Sheng Yan Jiu ; 53(3): 441-454, 2024 May.
Article Zh | MEDLINE | ID: mdl-38839586

OBJECTIVE: To investigate the effects of long-term(7 days and 14 days) bisphenol S(BPS) exposure on the ERß-MAPK signaling pathway, hormone secretion phenotype and cell cycle in human normal ovarian epithelial cells IOSE 80 at actual human exposure level. METHODS: Physiologically based pharmacokinetic model combined with BPS levels in the serum of women along the Yangtze River in China was used to determine the dosing concentrations of BPS, and vehicle control and 17 ß-estradiol(E_2) control were used. Complete medium with corresponding concentrations(0, 6.79×10~(-6), 6.79×10~(-4), 6.79×10~(-2), 6.79 µmol/L BPS and 10 nmol/L E_2) was replaced every 2 days. mRNA expressions of estrogen receptor(ERß and GPR30), key genes in MAPK signaling pathway(P38/JNK/ERK signaling pathway) and gonadotropin-releasing hormone-related genes(GnRH-I, GnRH-II and GnRH-R) were measured by qPCR. The ERß-MAPK signaling pathway inhibitors were employed to detect the effect of long-term exposure to BPS on the cell cycle by flow cytometry. Dose-response relationship analysis was performed to calculate the benchmark does lower confidence limits. RESULTS: Compared to the vehicle control, after 7 days exposure to BPS, the ratio of G_2/M phase was significantly increased(P<0.05), and the mRNA expressions of GnRH-I, GnRH-II and GnRH-R were significantly decreased(P<0.05); after 14 days exposure to BPS, the mRNA expressions of ESR2, MAPK3, and MAPK9 were significantly increased(P<0.05), and the mRNA expressions of GnRH-II and GnRH-R were significantly decreased(P<0.05). The GnRH-II mRNA expression level of BPS treatment for 7 days; the G_0/G_1 phase ratio, MAPK3 and MAPK8 mRNA expression level of BPS exposure for 14 days; and the GnRH-I mRNA expression level after BPS treatment for 7 days and 14 days showed a good dose-response relationship but with poor fit. CONCLUSION: Long-term low-dose exposure to BPS may cause cell cycle arrest by activating the ERß-MAPK signaling pathway, and may lead to changes in the hormone secretion of IOSE 80 cells.


Epithelial Cells , Estrogen Receptor beta , MAP Kinase Signaling System , Ovary , Phenols , Sulfones , Humans , Phenols/toxicity , Female , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Estrogen Receptor beta/metabolism , Estrogen Receptor beta/genetics , MAP Kinase Signaling System/drug effects , Ovary/drug effects , Ovary/metabolism , Sulfones/toxicity , Cell Line
2.
J Hazard Mater ; 476: 134938, 2024 Jun 17.
Article En | MEDLINE | ID: mdl-38901262

Microplastics (MPs) and heavy metals (HMs) are important pollutants in terrestrial ecosystems. In particular, the "island" landscape's weak resistance makes it vulnerable to pollution. However, there is a lack of research on MPs and HMs in island landscapes. Therefore, we used Helan Mountain as the research area. Assess the concentrations, spatial distribution, ecological risks, sources, and transport of MPs and HMs in the soil and blue sheep (Pseudois nayaur) feces. Variations in geographical distribution showed a connection between human activity and pollutants. Risk assessment indicated soil and wildlife were influenced by long-term pollutant polarization and multi-element inclusion (Igeo, Class I; PHI, Class V; RI (MPs), 33 % Class II, and 17 % Class IV; HI = 452.08). Source apportionment showed that tourism and coal combustion were the primary sources of pollutants. Meanwhile, a new coupling model of PMF/Risk was applied to quantify the source contribution of various risk types indicated transportation roads and tourism sources were the main sources of ecological and health risks, respectively. Improve the traceability of pollution source risks. Furthermore, also developed a novel tracing model for pollutant transportation, revealing a unique "source-sink-source" cycle in pollutant transportation, which provides a new methodological framework for the division of pollution risk areas in nature reserves and the evaluation of spatial transport between sources and sinks. Overall, this study establishes a foundational framework for conducting comprehensive risk assessments and formulating strategies for pollution control and management.

3.
BMC Cancer ; 24(1): 665, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822321

PURPOSE: To explore the clinical value of tumor abnormal protein (TAP) in the diagnosis and prognosis evaluation of prostate cancer. METHODS: This study enrolled a total of 265 patients who underwent prostate biopsy procedures from December 2017. TAP levels were assayed in their blood samples using a validated TAP testing kit. Comprehensive pathological assessments, including Gleason scores, TNM staging, and AJCC prognosis stages, were conducted on prostate cancer patients. Further analysis was carried out to examine the correlation between TAP expression levels and various clinical characteristics. RESULTS: A significantly elevated TAP concentration was discerned in prostate cancer patients relative to those with benign prostate hyperplasia. Moreover, a significantly elevated TAP expression was detected in prostate cancer patients with high Gleason score (≥ 8) and advanced stages (III and IV), as compared to those with Gleason scores of 6 and 7 and lower stages (I and II). When diagnosing prostate cancer in gray area of PSA, TAP demonstrated superior diagnostic capabilities over PSA alone, with higher diagnostic sensitivity, specificity and accuracy than fPSA/tPSA ratio. Additionally, post-surgical or hormonal treatment, there was a marked reduction in TAP expression level among prostate cancer patients. CONCLUSION: The assessment of TAP presents itself as a promising tool for early diagnosis and holds potential for sensitivity in monitoring treatment reponse in prostate cancer patients.


Biomarkers, Tumor , Neoplasm Grading , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/blood , Prostatic Neoplasms/pathology , Prostatic Neoplasms/diagnosis , Aged , Middle Aged , Biomarkers, Tumor/blood , Prognosis , Neoplasm Staging , Prostate-Specific Antigen/blood , Neoplasm Proteins/blood , Sensitivity and Specificity
4.
Wei Sheng Yan Jiu ; 53(1): 81-87, 2024 Jan.
Article Zh | MEDLINE | ID: mdl-38443177

OBJECTIVE: To explore the protective effect of different ratios of galactose oligosaccharide(GOS) and polydextrose(PDX) on intestinal cell barrier damage model of Caco-2. METHODS: The same batch of Caco-2 cells were cultured to form a cell barrier model and randomly divided into damaged model group without calcium, calcium-containing blank control group(1.8 mmol/L Ca~(2+)), low-ratio/low-dose group(1.8 mmol/L Ca~(2+)+2 mg/mL GOS+2 mg/mL PDX) and low-ratio/medium-dose group(1.8 mmol/L Ca~(2+)+4 mg/mL GOS+4 mg/mL PDX), low-ratio/high-dose group(1.8 mmol/L Ca~(2+)+8 mg/mL GOS+8 mg/mL PDX) and high-ratio/low-dose group(1.8 mmol/L Ca~(2+)+0.8 mg/mL GOS+3.2mg/mL PDX), high-ratio/medium-dose group(1.8 mmol/L Ca~(2+)+1.6 mg/mL GOS+6.4 mg/mL PDX), high-ratio/high-dose group(1.8 mmol/L Ca~(2+)+3.2mg/mL GOS+12.8 mg/mL PDX), a total of 8 groups, three parallel groups were performed in each group. The Trans Epithelial Electrical Resistance value and apparent permeability coefficient value of each group were determined after 4 d culture, and the morphology of tight junction proteins ZO-1, Occludin and Claudin-1 were observed by immunofluorescence method, and the expression levels of inflammatory related factors in each group were determined by protein microarray method. RESULTS: Compared with damaged model group, TEER ratio in calcium-containing blank control group was significantly increased(P<0.05), while Papp value was significantly decreased(P<0.05);Compared with calcium-containing blank control group, TEER ratio in low-ratio/medium-dose group and high-ratio/high-dose group was significantly increased(P<0.05) while Papp value was significantly decreased(P<0.05), and they could significantly down-regulate some inflammatory response related cytokines. The cell barrier was intact in all groups except for the compact junction protein structure in the model group. CONCLUSION: Compared with Ca~(2+) alone, the combination of two prebiotics can enhance the density of Caco-2 cell barrier and reduced the permeability of cell bypass. And it can significantly reduce the expression level of some inflammatory cytokines and effectively protect the intestinal cell barrier.


Calcium, Dietary , Calcium , Glucans , Humans , Caco-2 Cells , Cytokines , Oligosaccharides/pharmacology
5.
J Dairy Res ; 91(1): 31-37, 2024 Feb.
Article En | MEDLINE | ID: mdl-38415394

The aim of this experiment was to investigate the differential proteomic characteristics of milk from high- and low-yielding Guanzhong dairy goats during the peak lactation period under the same feeding conditions. Nine Guanzhong dairy goats with high yield (H: 3.5 ± 0.17 kg/d) and nine with low yield (L:1.2 ± 0.25 kg/d) were selected for milk proteomic analysis using tandem mass tag technology. A total of 78 differentially expressed proteins were identified. Compared with L, 50 proteins including HK3, HSPB1 and ANXA2 were significantly upregulated in H milk, while 28 proteins including LALBA and XDH were significantly downregulated. Bioinformatics analysis of the differentially expressed proteins showed that galactose metabolism, purine metabolism, glycolysis/gluconeogenesis, MAPK signaling pathway, regulation of actin cytoskeleton and other pathways were closely related to milk yield. HK3, HSPB1, ANXA2, LALBA and XDH were important candidate proteins associated with the milk production characteristics of Guanzhong dairy goats. Our data provide relevant biomarkers and a theoretical basis for improving milk production in Guanzhong dairy goats.


Goats , Lactation , Milk Proteins , Milk , Proteomics , Animals , Goats/metabolism , Female , Lactation/physiology , Milk/chemistry , Milk Proteins/analysis , Proteome
6.
Apoptosis ; 29(5-6): 757-767, 2024 Jun.
Article En | MEDLINE | ID: mdl-38358580

Autophagy has emerged as an important process of cell metabolism. With continuous in-depth research on autophagy, TFEB has been a key transcription factor regulating autophagy levels in recent years. Studies have established that TFEB regulates autophagy and apoptosis in various diseases. However, the relationship between TFEB and the pathogenesis of endometriosis remains unclear. This study aimed to investigate the effect of TFEB on the mechanism of endometriosis progression. The results showed that TFEB and autophagy-related protein LC3 are highly expressed in ectopic endometrium of patients with endometriosis, overexpression of TFEB in cultured human endometrial stromal cells (HESCs) by lentivirus not only promoted autophagy but also inhibited apoptosis. In addition, the migration and invasion ability of HESCs were enhanced by TFEB overexpression. Furthermore, inhibiting autophagy with specific inhibitors can attenuate migration and invasion of HESCs induced by TFEB. The rat models of endometriosis show that TFEB knockdown can suppress lesion growth in vivo. Our results suggest that autophagy may be involved in the progression mechanism of endometriosis, and the mechanism of autophagy disorder in endometriosis is probably related to TFEB. TFEB may be a key molecule in promoting endometriosis.


Apoptosis , Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Cell Movement , Endometriosis , Endometrium , Adult , Animals , Female , Humans , Rats , Apoptosis/genetics , Autophagy/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Cell Movement/genetics , Endometriosis/metabolism , Endometriosis/pathology , Endometriosis/genetics , Endometrium/metabolism , Endometrium/pathology , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Rats, Sprague-Dawley , Stromal Cells/metabolism , Stromal Cells/pathology
7.
Ecotoxicol Environ Saf ; 272: 116037, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38301581

BACKGROUND: In the plastics production sector, bisphenol S (BPS) has gained popularity as a replacement for bisphenol A (BPA). However, the mode of action (MOA) of female reproductive toxicity caused by BPS remains unclear and the safety of BPS is controversial. METHODS: Human normal ovarian epithelial cell line, IOSE80, were exposed to BPS at human-relevant levels for short-term exposure at 24 h or 48 h, or for long-term exposure at 28 days, either alone or together with five signaling pathway inhibitors: ICI 18,2780 (estrogen receptor [ER] antagonist), G15 (GPR30 specific inhibitor), U0126 (extracellular regulated protein kinase [ERK] 1/2 inhibitor), SP600125 (c-Jun N-terminal kinase [JNK] inhibitor) or SB203580 (p38 mitogen­activated protein kinase [p38MAPK] inhibitor). MOA through ERß-MAPK signaling pathway interruption was explored, and potential thresholds were estimated by the benchmark dose method. RESULTS: For short-term exposure, BPS exposure at human-relevant levels elevated the ESR2 and MAPK8 mRNA levels, along with the percentage of the G0/G1 phase. For long-term exposure, BPS raised the MAPK1 and EGFR mRNA levels, the ERß, p-ERK, and p-JNK protein levels, and the percentage of the G0/G1 phase, which was partly suppressed by U0126. The benchmark dose lower confidence limit (BMDL) of the percentage of the S phase after 24 h exposure was the lowest among all the BMDLs of a good fit, with BMDL5 of 9.55 µM. CONCLUSIONS: The MOA of female reproductive toxicity caused by BPS at human-relevant levels might involve: molecular initiating event (MIE)-BPS binding to ERß receptor, key event (KE)1-the interrupted expression of GnRH, KE2-the activation of JNK (for short-term exposure) and ERK pathway (for long-term exposure), KE3-cell cycle arrest (the increased percentage of the G0/G1 phase), and KE4-interruption of cell proliferation (only for short-term exposure). The BMDL of the percentage of the S phase after 24 h exposure was the lowest among all the BMDLs of a good fit, with BMDL5 of 9.55 µM.


Butadienes , Estrogen Receptor beta , MAP Kinase Signaling System , Nitriles , Humans , Female , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Signal Transduction , Epithelial Cells/metabolism , RNA, Messenger/metabolism
8.
Ecotoxicol Environ Saf ; 273: 116125, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38394755

2-Methylfuran (2-MF) is an important member of the furan family generated during food thermal processing. An in-vivo multiple endpoint genotoxicity assessment system was applied to explore the genotoxic mode of action and threshold of 2-MF. Male Sprague-Dawley rats received 2-MF by oral gavage at doses of 0.16, 0.625, 2.5, and 10 mg/kg.bw/day for 120 days. An additional 15 days were granted for recovery. The Pig-a gene mutation frequency of RET and RBC showed significant increases among the 2-MF groups on day 120. After a 15-day recovery period, the Pig-a gene mutation frequency returned to levels similar to those in the vehicle control. The tail intensity (TI) values of peripheral blood cells at a dose of 10 mg/kg.bw/day significantly increased from day 4 and remained at a high level after the recovery period. No statistical difference was found in the micronucleus frequency of peripheral blood between any 2-MF dose group and the corn oil group at any timepoint. 2-MF may not induce the production of micronuclei, but it could cause DNA breakage. It could not be ruled out that 2-MF may accumulate in vivo and cause gene mutations. Hence, DNA, other than the spindle, may be directly targeted. The mode of action of 2-MF may be that it was metabolized by EPHX1 to more DNA-active metabolites, thus leading to oxidative and direct DNA damage. The point of departure (PoD) of 2-MF-induced genotoxicity was derived as 0.506 mg/kg bw/day.


DNA Damage , Reticulocytes , Rats , Animals , Male , Rats, Sprague-Dawley , Micronucleus Tests , Reticulocytes/metabolism , Furans/toxicity , Furans/metabolism , DNA/metabolism , Mutagenicity Tests
9.
Int Immunopharmacol ; 128: 111531, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38281338

OBJECTIVE: To investigate the influence and significance of cGAS-STING signaling pathway and autophagy on the occurrence and development of preeclampsia. DESIGN: A case-control experimental study, in vitro cell culture study, and in vivo animal research. METHODS: Human placenta tissue was collected and the differences in HE staining were observed. Immunohistochemistry and Western blot were used to verify differences in cGAS, STING and autophagy associated proteins. The PE rat model was established, the pathological changes of placenta and kidney were observed by HE staining, and the expression levels of related proteins were detected. In the lv-STING transfected HTR-8/SVneo trophoblast cell model, the expressions of autophagy indexes such as P62 and LC3 were verified by RT-PCR, Western blot and cell fluorescence experiments, and then the invasion and migration ability of cells were detected by Transwell and scrape tests. As an effective STING antagonist, C176 was administered to PE rats to observe whether it was effective in the treatment of PE disease. RESULTS: The expression levels of cGAS, STING and autophagy related proteins were increased in human and rat placental tissues. In the HTR-8/SVneo cell model which transfected by lv-STING, the expression levels of autophagy related indicators such as P62 and LC3 were increased. The invasion and migration ability of HTR-8/SVneo cells were significantly inhibited, which was improved by the autophagy inhibitor chloroquine. Acting as an effective STING antagonist in vivo, C176 significantly reversed the outcome of PE, alleviated and prevented the occurrence and development of PE. CONCLUSION: Our study proved that the cGAS-STING signaling pathway and autophagy levels are elevated in preeclampsia disease, and the cGAS-STING signaling pathway promotes the occurrence and development of preeclampsia through up-regulation of autophagy. This finding provides new insights into the pathogenesis of preeclampsia. Targeting this pathway may provide a potential therapeutic strategy for the treatment of preeclampsia.


Placenta , Pre-Eclampsia , Pregnancy , Humans , Female , Animals , Rats , Placenta/metabolism , Cell Line , Pre-Eclampsia/metabolism , Nucleotidyltransferases/metabolism , Autophagy , Cell Movement
10.
J Pharm Sci ; 113(4): 1007-1019, 2024 Apr.
Article En | MEDLINE | ID: mdl-37832919

Amorphous solid dispersion (ASD) is an enabling approach utilized to deliver poorly soluble compounds. ASDs can spontaneously generate drug-rich amorphous nanoparticles upon dissolution, which can act as a reservoir for maintaining supersaturation during oral absorption. But, conventional ASDs are often limited in drug loadings to < 20 %. For indications where the dose is high, this can translate into a significant pill burden. The aim of this research was to develop a high drug loading (DL) amorphous nanoparticle (ANP) formulation that can release the drug-rich nanoparticles into solution upon contact with aqueous environment. Nanoparticles were directly engineered using solvent/anti-solvent precipitation. The obtained nanoparticle suspension was then concentrated followed by solidification to a re-dispersible amorphous dosage form using spray drying or lyophilization. The impact of process variables was studied using dynamic light scattering (DLS), scanning electron microscopy (SEM), high performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC). It was observed that spray drying led to a non-re-dispersible formulation. Sucrose and trehalose containing lyocakes resulted in re-dispersible formulations. The trehalose containing lyocakes, in a dog study, gave comparable performance to the reference tablet in the fasted state but lower area under the curve (AUC) in fed state.


Nanoparticles , Trehalose , Animals , Dogs , Solubility , Solvents , Water/chemistry , Nanoparticles/chemistry , Drug Compounding/methods , Drug Liberation
11.
Mol Pharm ; 20(11): 5827-5841, 2023 11 06.
Article En | MEDLINE | ID: mdl-37876176

Amorphous solid dispersions (ASDs) are an enabling formulation approach used to enhance bioavailability of poorly water-soluble molecules in oral drug products. Drug-rich amorphous nanoparticles generated in situ during ASD dissolution maintain supersaturation that drives enhanced absorption. However, in situ formation of nanoparticles requires large quantities of polymers to release drugs rapidly, resulting in an ASD drug load <25%. Delivering directly engineered drug-rich amorphous nanoparticles can reduce the quantities of polymers significantly without sacrificing bioavailability. Preparation of 90% drug-load amorphous nanoparticles (ANPs) of <300 nm diameter using solvent/antisolvent nanoprecipitation, organic solvent removal, and spray drying was demonstrated previously on model compound ABT-530 with Copovidone and sodium dodecyl sulfate (anionic). In this work, nonionic surfactant d-α-tocopheryl polyethylene glycol succinate (Vitamin E TPGS, or TPGS) was used to prepare ANPs as a comparison. Characterization of ANPs by dynamic light scattering, filtrate potency assay, scanning electron microscopy, and differential scanning calorimetry revealed differences in surface properties of nanoparticles afforded by surfactants. This work demonstrates the importance of understanding the impact of the stabilizing agents on nanoparticle behavior when designing a high-drug-load amorphous formulation for poorly water-soluble compounds as well as the impact on redispersion.


Polymers , Surface-Active Agents , Solubility , Surface-Active Agents/chemistry , Polymers/chemistry , Solvents , Water/chemistry , Drug Compounding/methods
12.
Int Immunopharmacol ; 123: 110736, 2023 Oct.
Article En | MEDLINE | ID: mdl-37549513

AIMS: Doxorubicin (DOX) is an effective anti-tumor drug, but the cardiotoxicity severely limits its clinical use. Interestingly, a hypothesis has emerged suggesting an association between DOX-induced cardiotoxicity and mitochondrial disorders and oxidative stress. The mitochonic acid 5 (MA5) shows promise in alleviating mitochondrial dysfunction by promoting mitochondrial ATP synthesis and reducing reactive oxygen species (ROS) accumulation, though its potential in ameliorating DOX-induced cardiotoxicity remains elusive. METHODS: Network pharmacology approach, molecular docking techniques, and molecular dynamics simulation (MDS) were used to reveal the specific drug targets and pharmaceutical mechanisms involved in the treatment of DOX-induced cardiotoxicity using MA5. For experimental verification, cardiomyocytes (H9c2) and mice were exposed to DOX in the presence or absence of MA5. Our investigation involved the assessment of echocardiographic parameters, cardiac enzymes, inflammatory factors, mitochondrial function, myocardial structure, and cardiomyocyte pyroptosis. RESULTS: Among the 100 core targets identified in network pharmacology, MA5 was pharmacologically active against DOX-induced cardiotoxicity via pathways implicated in cancer, prostate cancer, lipids and atherosclerosis. Molecular docking analysis confirmed that MA5 docked well with TNF-α, interleukin-6 (IL-6), and caspase-3. Furthermore, MA5 exhibited a stronger affinity toward TNF-α than IL-6 and caspase-3. Subsequent MDS revealed the stability of binding between MA5 and TNF-α. The DOX-challenged mice also displayed abnormal myocardial enzymogram, disrupted systolic and diastolic function, and elevated inflammation and cardiomyocyte pyroptosis, which could be mitigated by the administration of MA5. Similarly, H9c2 cells exposed to DOX showed increased intracellular ROS production and impaired mitochondrial function, which were relieved by MA5 treatment. CONCLUSION: Our findings suggest that MA5 attenuates DOX-induced cardiac anomalies through the TNF-α-mediated regulation of inflammation and pyroptosis. These insights offer a potential therapeutic strategy for managing DOX-induced cardiac complications, thereby improving the safety and efficacy of cancer treatments.


Myocytes, Cardiac , NF-kappa B , Male , Mice , Animals , NF-kappa B/metabolism , Myocytes, Cardiac/metabolism , Tumor Necrosis Factor-alpha/metabolism , Pyroptosis , Caspase 3/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Cardiotoxicity/drug therapy , Cardiotoxicity/metabolism , Interleukin-6/metabolism , Reactive Oxygen Species/metabolism , Molecular Docking Simulation , Doxorubicin/adverse effects , Oxidative Stress , Inflammation/metabolism , Apoptosis
13.
Theriogenology ; 210: 53-61, 2023 Oct 15.
Article En | MEDLINE | ID: mdl-37473596

In order to explore the different metabolites of buck semen with different motility stored at 4 °C, the semen of bucks was collected by artificial vagina. The collected semen was divided into high motility group and low motility group after treatment, with 6 replicates set for each group. The semen metabolites of high motility group and low motility group were detected by Liquid Chromatography-Mass Spectrometry (LC-MS). The results showed that 101 different metabolites were detected in the high and low motility groups of bucks, of which 48 metabolites were significantly up-regulated (P < 0.05) and 53 metabolites were significantly down regulated (P < 0.05). Most of these metabolites belonged to lipids and lipid-like molecules, organic acids and their derivatives, and organic oxygen compounds, which were mainly related to energy metabolism. According to the functional enrichment analysis of the former differential metabolites in KEGG database, the top 20 most representative metabolic pathways were detected, among which the glycerophospholipid metabolic pathways changed significantly. From the perspective of metabolomics, this study revealed the differences of metabolites and characteristic compounds of semen with different motility of bucks under low temperature preservation, which provided a scientific basis for the preservation and utilization of semen of Guanzhong dairy goats in the future.


Semen Preservation , Semen , Male , Female , Animals , Semen/chemistry , Spermatozoa , Sperm Motility , Goats , Semen Analysis/veterinary , Semen Preservation/veterinary , Semen Preservation/methods
14.
Vet Microbiol ; 282: 109760, 2023 Jul.
Article En | MEDLINE | ID: mdl-37120967

Accumulation of adaptive mutations in the polymerase and NP genes is crucial for the adaptation of avian influenza A viruses (IAV) to a new host. Here, we identified residues in the polymerase and NP proteins for which the percentages were substantially different between avian and human influenza viruses, to screen for key mammalian adaptive markers. The top 10 human virus-like residues in each gene segment were then selected for analysis of polymerase activity. Our research revealed that the PA-M311I and PA-A343S mutations increased the polymerase activity among the 40 individual mutations that augmented viral transcription and genomic replication, leading to increased virus yields, pro-inflammatory cytokine/chemokine levels and pathogenicity in mice. We also investigated the accumulative mutations in multiple polymerase genes and discovered that a combination of PB2-E120D/V227I, PB1-K52R/L212V/R486K/V709I, PA-R204K/M311I, and NP-E18D/R65K (hereafter referred to as the ten-sites joint mutations) has been identified to generate the highest polymerase activity, which can to some extent make up for the highest polymerase activity caused by the PB2-627 K mutation. When the ten-sites joint mutations co-occur with 627 K, the polymerase activity was further enhanced, potentially resulting in a virus with an improved phenotype that can infect a broader range of hosts, including mammals. This could lead to a greater public health concern than the current epidemic, highlighting that continuous surveillance of the variations of these sites is utmost important.


Influenza A virus , Influenza in Birds , Animals , Mice , Humans , Amino Acid Substitution , Viral Proteins/genetics , Viral Proteins/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Influenza A virus/genetics , Nucleotidyltransferases/genetics , Mammals , Virus Replication
15.
Int Immunopharmacol ; 117: 109644, 2023 Apr.
Article En | MEDLINE | ID: mdl-36878046

OBJECTIVE: To investigate the roles of the cGAS-STING signal pathway and autophagy in the disease progression of endometriosis and to explore the regulatory mechanism of the cGAS-STING signal pathway on autophagy. DESIGN: A case-control experimental study, in vitro primary cell culture study, and in vivo animal research. MAIN OUTCOME MEASURES: Immunohistochemistry, RT-PCR and Western Blot were used to detect cGAS-STING signal pathway and autophagy expression differences in human and rat models. The lentivirus was used to overexpress STING in cells. The expression level of autophagy in human endometrial stromal cells (HESCs) transfected with lv-STING was detected by Western Blot, RT-PCR, and immunofluorescence. Transwell migration and invasion assays were conducted to assess cellular motility. The STING antagonist was applicated in vivo to investigate the therapeutic effects. RESULTS: The expression levels of the cGAS-STING signal pathway and autophagy in Human and Rat ectopic endometrium were increased. STING overexpression promotes the expression of autophagy in human endometrial stromal cells (HESCs). STING overexpression enhances the migration and invasion of the human endometrial stromal cells (HESCs), but the addition of autophagy antagonists could significantly reverse this. STING antagonists inhibited the expression of autophagy in vivo and reduced the volume of ectopic lesions. CONCLUSION: The expression levels of the cGAS-STING signal pathway and autophagy were increased in endometriosis. cGAS-STING signal pathway promotes the development of endometriosis by upregulating autophagy.


Autophagy , Endometriosis , Animals , Female , Humans , Rats , Autophagy/physiology , Cell Movement , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Signal Transduction/physiology
16.
ACS Nano ; 17(6): 5340-5353, 2023 03 28.
Article En | MEDLINE | ID: mdl-36913671

Cancer immunotherapy, such as the Toll-like receptor (TLR) agonist including CpG oligodeoxynucleotide, has shown potency in clinical settings. However, it is still confronted with multiple challenges, which include the limited efficacy and severe adverse events caused by the rapid clearance and systemic diffusion of CpG. Here we report an improved CpG-based immunotherapy approach composed of a synthetic extracellular matrix (ECM)-anchored DNA/peptide hybrid nanoagonist (EaCpG) via (1) a tailor designed DNA template that encodes tetramer CpG and additional short DNA moieties, (2) generation of elongated multimeric CpG through rolling circle amplification (RCA), (3) self-assembly of densely packaged CpG particles composed of tandem CpG building blocks and magnesium pyrophosphate, and (4) incorporation of multiple copies of ECM binding peptide through hybridization to short DNA moieties. The structurally well-defined EaCpG shows dramatically increased intratumoral retention and marginal systemic dissemination through peritumoral administration, leading to potent antitumor immune response and subsequent tumor elimination, with minimal treatment-related toxicity. Combined with conventional standard-of-care therapies, peritumor administration of EaCpG generates systemic immune responses that lead to a curative abscopal effect on distant untreated tumors in multiple cancer models, which is superior to the unmodified CpG. Taken together, EaCpG provides a facile and generalizable strategy to simultaneously potentiate the potency and safety of CpG for combinational cancer immunotherapies.


Neoplasms , Humans , Animals , Mice , Neoplasms/drug therapy , Oligodeoxyribonucleotides/pharmacology , Adjuvants, Immunologic , Immunotherapy , DNA , Toll-Like Receptors , Toll-Like Receptor 9/agonists , Mice, Inbred C57BL
17.
Theriogenology ; 197: 232-239, 2023 Feb.
Article En | MEDLINE | ID: mdl-36525862

In order to explore the differential metabolites between fresh and frozen-thawed semen of Guanzhong dairy goats, semen samples were collected by artificial vagina method, and divided into fresh and frozen-thawed semen groups, with six replicates in each group. Liquid Chromatography-mass spectrometry (LC-MS) technology was used to detect semen metabolites in both groups. The metabolites were analyzed and identified by the combination of multidimensional statistical analysis, namely principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), orthogonal partial least squares discriminant analysis (OPLS-DA) and univariate statistical analysis, Differential metabolites were identified according to One-step Solution for Identification of Small Molecules in Metabolomics Studies (OSI/SMMS) combined with Human Metabolome Database (HMDB), Lipidmaps and Metlin and the metabolic pathways of different metabolites were enriched and analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The results showed that a total of 53 differential metabolites were detected in fresh and frozen-thawed semen groups, of which 10 metabolites were significantly up-regulated (P < 0.05) and 43 were significantly down-regulated (P < 0.05). Most of the metabolites belonged to lipids and lipid-like molecules, organic acids and their derivatives, organic oxygen compounds, etc. According to the functional enrichment analysis of the top twenty differential metabolites in the KEGG database, significant changes occurred in linoleic acid metabolism pathway out of total eleven pathways observed. These differential metabolites can be used as metabolic markers of sperm cryo-injury in dairy goats.


Metabolomics , Semen , Female , Male , Humans , Animals , Freezing , Metabolomics/methods , Metabolome , Goats
18.
J Pharm Sci ; 112(1): 250-263, 2023 01.
Article En | MEDLINE | ID: mdl-36243131

Amorphous solid dispersions (ASD) are a commonly used enabling formulation technology to drive oral absorption of poorly soluble drugs. To ensure adequate solid-state stability and dissolution characteristics, the ASD formulation design typically has ≤ 25% drug loading. Exposed to aqueous media, ASD formulations can produce drug-rich colloidal dispersion with particle size < 500 nm. This in situ formation of colloidal particles requires incorporation of excess excipients in the formulation. The concept of using engineered drug-rich particles having comparable size as those generated by ASDs in aqueous media is explored with the goal of increasing drug loading in the solid dosage form. Utilizing ABT-530 as model compound, a controlled solvent-antisolvent precipitation method resulted in a dilute suspension that contained drug-rich (90% (w/w)) amorphous nanoparticles (ANP). The precipitation process was optimized to yield a suspension containing < 300 nm ANP. A systematic evaluation of formulation properties and process variables resulted in the generation of dry powders composed of 1-8 µm agglomerates of nanoparticles which in contact with water regenerated the colloidal suspension having particle size comparable to primary particles. Thus, this work demonstrates an approach to designing a re-dispersible ANP based powder containing ≥90% w/w ABT-530 that could be used in preparation of a high drug load solid dosage form.


Water , Drug Compounding/methods , Drug Liberation , Particle Size , Powders , Solubility , Suspensions
19.
Phys Rev E ; 106(2-1): 024902, 2022 Aug.
Article En | MEDLINE | ID: mdl-36109991

Flow of size-bidisperse particle mixtures in a spherical tumbler rotating alternately about two perpendicular axes produces segregation patterns that track the location of nonmixing islands predicted by a dynamical systems approach. To better understand the paradoxical accumulation of large particles in regions defined by barriers to transport, we perform discrete element method (DEM) simulations to visualize the three-dimensional structure of the segregation patterns and track individual particles. Our DEM simulations and modeling results indicate that segregation pattern formation in the biaxial spherical tumbler is due to the interaction of size-driven radial segregation with the weak spanwise component of the advective surface flow. Specifically, we find that after large particles segregate to the surface, slow axial drift in the flowing layer, which is inherent to spherical tumblers, is sufficient to drive large particles across nominal transport barriers and into nonmixing islands predicted by an advective flow model in the absence of axial drift. Axial drift alters the periodic dynamics of nonmixing islands, turning them into "sinks" where large particles accumulate even in the presence of collisional diffusion. Overall, our results indicate that weak perturbation of chaotic flow has the potential to alter key dynamical system features (e.g., transport barriers), which ultimately can result in unexpected physical phenomena.

20.
Molecules ; 27(16)2022 Aug 18.
Article En | MEDLINE | ID: mdl-36014516

PMP-HPLC, FT-IR, and HPSEC fingerprints of 10 batches of polysaccharides from Saposhnikoviae Radix with different production areas and harvest times have been prepared, and the chemometrics analysis was performed. The anti-allergic activity of 10 batches of Saposhnikoviae Radix polysaccharide (SP) was evaluated, and the spectrum-effect relationship of the 10 batches of SP was analyzed by gray correlation degree with the chromatographic fingerprint as the independent variable. The results showed that the PMP-HPLC, HPSEC, and FT-IR fingerprints of 10 batches of SP had a high similarity. Two monosaccharides (rhamnose and galactose), the polysaccharide fragment Mn = 8.67 × 106~9.56 × 106 Da, and the FT-IR absorption peak of 892 cm-1 can be used as the quality control markers of SPs. All 10 batches of SP could significantly inhibit the release of ß-HEX in RBL-231 cells, and the polysaccharides harvested from Inner Mongolia in the winter had the best anti-allergic activity. The spectrum-effect relationship model showed that the monosaccharide composition and molecular weight were related to the anti-allergic activity of the SPs. Multiple fingerprints combined with spectrum-effect relationship analysis can evaluate and control the quality of SPs from the aspects of overall quality and efficacy, which has more application value.


Anti-Allergic Agents , Drugs, Chinese Herbal , Anti-Allergic Agents/analysis , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Monosaccharides/analysis , Plant Roots/chemistry , Polysaccharides/chemistry , Spectroscopy, Fourier Transform Infrared
...