Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Top Curr Chem (Cham) ; 382(2): 20, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829467

ABSTRACT

Cannabis sativa has long been used for neurological and psychological healing. Recently, cannabidiol (CBD) extracted from cannabis sativa has gained prominence in the medical field due to its non-psychotropic therapeutic effects on the central and peripheral nervous systems. CBD, also acting as a potent antioxidant, displays diverse clinical properties such as anticancer, antiinflammatory, antidepressant, antioxidant, antiemetic, anxiolytic, antiepileptic, and antipsychotic effects. In this review, we summarized the structural activity relationship of CBD with different receptors by both experimental and computational techniques and investigated the mechanism of interaction between related receptors and CBD. The discovery of structural activity relationship between CBD and target receptors would provide a direction to optimize the scaffold of CBD and its derivatives, which would give potential medical applications on CBD-based therapies in various illnesses.


Subject(s)
Cannabidiol , Cannabidiol/chemistry , Cannabidiol/pharmacology , Cannabidiol/metabolism , Humans , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Cannabis/chemistry , Structure-Activity Relationship , Receptors, Cannabinoid/metabolism , Anticonvulsants/chemistry , Anticonvulsants/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antidepressive Agents/chemistry , Antidepressive Agents/pharmacology
2.
Int J Mol Sci ; 25(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38791351

ABSTRACT

Phytophthora infestans (Mont.) de Bary, the oomycotic pathogen responsible for potato late blight, is the most devastating disease of potato production. The primary pesticides used to control oomycosis are phenyl amide fungicides, which cause environmental pollution and toxic residues harmful to both human and animal health. To address this, an antimicrobial peptide, NoPv1, has been screened to target Plasmopara viticola cellulose synthase 2 (PvCesA2) to inhibit the growth of Phytophthora infestans (P. infestans). In this study, we employed AlphaFold2 to predict the three-dimensional structure of PvCesA2 along with NoPv peptides. Subsequently, utilizing computational methods, we dissected the interaction mechanism between PvCesA2 and these peptides. Based on this analysis, we performed a saturation mutation of NoPv1 and successfully obtained the double mutants DP1 and DP2 with a higher affinity for PvCesA2. Meanwhile, dynamics simulations revealed that both DP1 and DP2 utilize a mechanism akin to the barrel-stave model for penetrating the cell membrane. Furthermore, the predicted results showed that the antimicrobial activity of DP1 was superior to that of NoPv1 without being toxic to human cells. These findings may offer insights for advancing the development of eco-friendly pesticides targeting various oomycete diseases, including late blight.


Subject(s)
Phytophthora infestans , Plant Diseases , Solanum tuberosum , Phytophthora infestans/drug effects , Solanum tuberosum/microbiology , Plant Diseases/microbiology , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/metabolism , Molecular Dynamics Simulation , Glucosyltransferases/metabolism , Glucosyltransferases/genetics , Humans
3.
Int J Mol Sci ; 25(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38542484

ABSTRACT

Soybean phytophthora blight is a severe menace to global agriculture, causing annual losses surpassing USD 1 billion. Present crop loss mitigation strategies primarily rely on chemical pesticides and disease-resistant breeding, frequently surpassed by the pathogens' quick adaptive evolution. In this urgent scenario, our research delves into innovative antimicrobial peptides characterized by low drug resistance and environmental friendliness. Inhibiting chitin synthase gene activity in Phytophthora sojae impairs vital functions such as growth and sporulation, presenting an effective method to reduce its pathogenic impact. In our study, we screened 16 previously tested peptides to evaluate their antimicrobial effects against Phytophthora using structure-guided drug design, which involves molecular docking, saturation mutagenesis, molecular dynamics, and toxicity prediction. The in silico analysis identified AMP_04 with potential inhibitory activity against Phytophthora sojae's chitin synthase. Through three rounds of saturation mutagenesis, we pin-pointed the most effective triple mutant, TP (D10K, G11I, S14L). Molecular dynamic simulations revealed TP's stability in the chitin synthase-TP complex and its transmembrane mechanism, employing an all-atom force field. Our findings demonstrate the efficacy of TP in occupying the substrate-binding pocket and translocation catalytic channel. Effective inhibition of the chitin synthase enzyme can be achieved. Specifically, the triple mutant demonstrates enhanced antimicrobial potency and decreased toxicity relative to the wild-type AMP_04, utilizing a mechanism akin to the barrel-stave model during membrane translocation. Collectively, our study provides a new strategy that could be used as a potent antimicrobial agent in combatting soybean blight, contributing to sustainable agricultural practices.


Subject(s)
Anti-Infective Agents , Phytophthora , Glycine max/genetics , Phytophthora/physiology , Chitin Synthase/genetics , Antimicrobial Peptides , Molecular Docking Simulation , Disease Resistance , Plant Breeding , Plant Diseases/prevention & control , Plant Diseases/genetics
4.
Eur J Med Chem ; 266: 116113, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38215588

ABSTRACT

Recently, some inhibitors of soluble epoxide hydrolase (sEH) showed limited potential in treating sepsis by increasing survival time, but they have unfortunately failed to improve survival rates. In this study, we initially identified a new hit 11D, belonging to a natural skeleton known as stilbene and having an IC50 of 644 nM on inhibiting murine sEH. Natural scaffold-based sEH inhibitors are paid less attention. A combination of structure-activity relationships (SARs)-guided structural optimization and computer-aided skeleton growth led to a highly effective lead compound 70P (IC50: 4.0 nM). The dose-response study indicated that 70P (at doses of 0.5-5 mg/kg, ip.) significantly increased survival rates and survival time by reducing the levels of the inflammatory factors TNF-α and IL-6 in the liver. Interestingly, 70P exhibited much higher accumulation in the liver than in plasma (AUC ratio: 175). In addition, 70P exhibits equal IC50 value (1.5 nM) on inhibiting human sEH as EC5026 (1.7 nM). In conclusion, the natural scaffold-extended sEH inhibitor 70P has the potential to become a new promising lead for addressing the unmet medical need in sepsis treatment, which highlighted the importance of natural skeleton in developing sEH inhibitors.


Subject(s)
Epoxide Hydrolases , Sepsis , Mice , Humans , Animals , Structure-Activity Relationship , Liver/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Sepsis/drug therapy
5.
Chembiochem ; 23(24): e202200461, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36265004

ABSTRACT

SARS-CoV-2 infects human epithelial cells through specific interaction with angiotensin-converting enzyme 2 (ACE2). In addition, heparan sulfate proteoglycans act as the attachment factor to promote the binding of viral spike protein receptor binding domain (RBD) to ACE2 on host cells. Though the rapid development of vaccines has contributed significantly to preventing severe disease, mutated SARS-CoV-2 strains, especially the SARS-CoV-2 Omicron variant, show increased affinity of RBD binding to ACE2, leading to immune escape. Thus, there is still an unmet need for new antiviral drugs. In this study, we constructed pharmacophore models based on the spike RBD of SARS-CoV-2 and SARS-CoV-2 Omicron variant and performed virtual screen for best-hit compounds from our disaccharide library. Screening of 96 disaccharide structures identified two disaccharides that displayed higher binding affinity to RBD in comparison to reported small molecule antiviral drugs. Further, screening PharmMapper demonstrated interactions of the disaccharides with a number of inflammatory cytokines, suggesting a potential for disaccharides with multiple-protein targets.


Subject(s)
Antiviral Agents , Disaccharides , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Binding Sites , COVID-19 , Disaccharides/pharmacology , Protein Binding , Receptors, Virus/metabolism , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/chemistry , High-Throughput Screening Assays
6.
Thorax ; 75(8): 689-692, 2020 08.
Article in English | MEDLINE | ID: mdl-32444435

ABSTRACT

In 500 children aged ≤10 years after 13-valent pneumococcal conjugate vaccine (PCV)13 immunisation in different schedules, serotypes 19A-specific and 19F-specific immunoglobulin G (IgG) were predicted to persist above 0.35 µg/mL for ≥10 years in all groups, likely due to PCV13-induced memory with natural boosting from residual diseases and colonisation. Generally, serotype-specific IgG could persist above 0.35 µg/mL longer (≥5 years) in the catch-up group than in the 2+1 and 3+1 immunisation groups. 14.5% of the carriage isolates belonged to PCV13 serotypes; statistical analysis revealed that a high serum IgG level (>10.96 µg/mL) will be required to eliminate the point-prevalence nasopharyngeal carriage of serotype 19A.


Subject(s)
Carrier State/prevention & control , Nasopharynx/microbiology , Pneumococcal Infections/immunology , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines , Streptococcus pneumoniae/isolation & purification , Carrier State/microbiology , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Male , Time Factors
7.
Chembiochem ; 21(3): 381-391, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31309701

ABSTRACT

Binuclear Mg ketol-acid reductoisomerase (KARI), which converts (S)-2-acetolactate into (R)-2,3-dihydroxyisovalerate, is responsible for the second step of the biosynthesis of branched-chain amino acids in plants and microorganisms and thus serves as a key inhibition target potentially without effects on mammals. Here, through the use of density functional calculations and a chemical model, the KARI-catalyzed reaction has been demonstrated to include the initial deprotonation of the substrate C2 hydroxy group, bridged by the two Mg ions, alkyl migration from the C2-alkoxide carbon atom to the C3-carbonyl carbon atom, and hydride transfer from a nicotinamide adenine dinucleotide phosphate [NAD(P)H] cofactor to C2. A dead-end mechanism with a hydride transferred to the C3 carbonyl group has been ruled out. The nucleophilicity (migratory aptitude) of the migrating carbon atom and the provision of additional negative charge to the di-Mg coordination sphere have significant effects on the steps of alkyl migration and hydride transfer, respectively. Other important mechanistic characteristics are also revealed. Inspired by the mechanism, an inhibitor (2-carboxylate-lactic acid) was designed and predicted by barrier analysis to be effective in inactivating KARI, hence probably enriching the antifungal and antibacterial library. Two types of slow substrate analogues (2-trihalomethyl acetolactic acids and 2-glutaryl lactic acid) were also found.


Subject(s)
Amino Acids, Branched-Chain/antagonists & inhibitors , Carboxylic Acids/pharmacology , Enzyme Inhibitors/pharmacology , Ketol-Acid Reductoisomerase/antagonists & inhibitors , Lactic Acid/pharmacology , Magnesium/metabolism , Amino Acids, Branched-Chain/biosynthesis , Carboxylic Acids/chemical synthesis , Carboxylic Acids/chemistry , Crystallography, X-Ray , Density Functional Theory , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Ketol-Acid Reductoisomerase/chemistry , Ketol-Acid Reductoisomerase/metabolism , Lactic Acid/chemical synthesis , Lactic Acid/chemistry , Magnesium/chemistry , Models, Molecular , Molecular Structure
8.
Chemistry ; 23(31): 7545-7557, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28374531

ABSTRACT

Lactate racemase (LarA), a new nickel enzyme discovered recently, catalyzes the racemization between d- and l-lactates with a novel nickel pincer cofactor (Ni-PTTMN) derived from nicotinic acid. In this study, by using DFT and a 200-atom active-site model, LarA is revealed to employ a modified proton-coupled hydride-transfer mechanism in which a hydride is transferred to a cofactor pyridine carbon from the substrate α-carbon along with proton transfer from the substrate hydroxy group to a histidine, and then moved back from the opposite side. Tyr294 and Lys298 provide significant acceleration effects by orientating substrates and stabilizing the negative charge developing at the substrate hydroxy oxygen. The barrier was determined to be 12.0 kcal mol-1 , which reveals enhanced racemase activity relative to the LarA reaction using NAD+ -like cofactors. Compared with NAD+ , Ni-PTTMN has a stronger hydride-addition reactivity in moderate and high environmental polarity and may fit perfectly the moderately polar active site of LarA.


Subject(s)
Coenzymes/chemistry , NAD/chemistry , Nickel/chemistry , Racemases and Epimerases/metabolism , Evolution, Molecular , Racemases and Epimerases/chemistry
9.
J Basic Microbiol ; 49 Suppl 1: S79-86, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19455515

ABSTRACT

Iron homeostasis is essential to almost all organisms. In this study, we identified the putative homolog of the iron-storage protein-encoding gene, dpsL, in the intracellular pathogen Legionella pneumophila and demonstrated its expression under iron-limited conditions and its responses to multiple stresses. Quantitative real-time PCR analysis indicated that the expression of dpsL was enhanced under iron limitation regardless of the growth phase. Compared with the wild-type cells, the cells devoid of dpsL were heat and H(2)O(2)-sensitive. In contrast to the dps mutants of other bacteria, the growth of the dpsL mutant in an iron-deprived medium was delayed but finally reached the same cell density as wild-type cells during the stationary phase of growth. The finding that the dpsL mutant is salt resistant suggested the involvement of DpsL in virulence.


Subject(s)
Bacterial Proteins/metabolism , Ferritins/metabolism , Iron/metabolism , Legionella pneumophila/genetics , Amino Acid Sequence , Bacterial Proteins/genetics , Ferritins/genetics , Gene Deletion , Gene Expression Regulation, Bacterial , Genes, Bacterial , Genetic Complementation Test , Hot Temperature , Hydrogen Peroxide/pharmacology , Legionella pneumophila/growth & development , Legionella pneumophila/metabolism , Legionella pneumophila/pathogenicity , Molecular Sequence Data , Mutation , Oxidative Stress , Sequence Alignment , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL