Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Technol Cancer Res Treat ; 23: 15330338241273198, 2024.
Article in English | MEDLINE | ID: mdl-39166278

ABSTRACT

Background: To evaluate the efficacy and safety of allogenic CD8 + natural killer T (CD8+ NKT) immunotherapy combined with gefitinib in the treatment of advanced or metastatic EGFR mutant non-small cell lung cancer (NSCLC). Methods: This study is prospective. The NSCLC patients with exon 19 (Ex19del) or exon 21 L858R point mutations, and response to gefitinib treatment were enrolled into the trial to be randomly assigned into the gefitinib arm and the gefitinib/NKT arm. Allogenic CD8+ NKT cells were cultured in vitro and adaptive transferred into the patients via vein in the gefitinib/NKT arm. The primary endpoint was progression-free survival (PFS). Secondary endpoint analysis included time to disease progression (TTP), overall survival (OS), levels of serum tumour markers for carcinoembryonic antigen (CEA) and alanine aminotransferase (ALT) in the blood, the response rate and safety. From July 2017 to June 2021, 19 patients were randomly assigned to the gefitinib arm (n = 8) and the gefitinib/NKT arm (n = 11). Results: The estimated median survival PFS in the gefitinib/NKT arm was significantly longer than that of the gefitinib arm (12 months vs 7 months). Similar results were also observed for the median TTP. Moreover, the gefitinib/NKT arm had better CEA control than the gefitinib arm. Clinical grade 3 adverse reactions occurred in 64% and 39% of patients in the gefitinib/NKT arm and the gefitinib arm, respectively. The most common grade 3 adverse events in the gefitinib/NKT arm included abnormal liver function in 8 cases (73%) and diarrhoea in 1 case (9%), both of which resolved after drug intervention. Conclusion: The PFS of EGFR-mutated advanced NSCLC treated with allogenic CD8+ NKT cells combined with gefitinib was longer than that of gefitinib alone. No obvious serious adverse reactions occurred, and the patients compliance and survival status were good.


Subject(s)
ErbB Receptors , Lung Neoplasms , Mutation , Natural Killer T-Cells , Humans , Female , ErbB Receptors/genetics , Lung Neoplasms/therapy , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/mortality , Middle Aged , Male , Aged , Natural Killer T-Cells/immunology , Protein Kinase Inhibitors/therapeutic use , Adult , Gefitinib/therapeutic use , Combined Modality Therapy , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/mortality , Prospective Studies , Immunotherapy/methods , Treatment Outcome , Neoplasm Staging
2.
Article in English | MEDLINE | ID: mdl-39012715

ABSTRACT

Background: The interactions between fibroblasts and bronchial epithelial cells play important roles in the development of chronic obstructive pulmonary disease (COPD). Interleukin (IL)-17A triggers the activation of fibroblasts and secretion of inflammatory mediators, which promotes epithelial mesenchymal transition (EMT) in bronchial epithelial cells. Fibroblasts secrete C-X-C motif chemokine ligand 12 (CXCL12), which specifically binds to its receptor, C-X-C motif chemokine receptor 4 (CXCR4) to mediate inflammatory responses. This study aims to investigate IL-17A- and CXCL12-induced airway remodeling. Methods: Primary lung fibroblasts were isolated from human and murine lung tissue for the in vitro experiments, and a mouse model of cigarette smoke (CS)-induced COPD was established for the in vivo experiments. The results were analyzed using one-way ANOVA and Tukey's test or Bonferroni's test for post-hoc test. A p-value < 0.05 was considered statistically significant. Results: Through in vitro experiments, we found that IL-17A-activated primary lung fibroblasts secreted CXCL12 and stimulated EMT in bronchial epithelial cells. However, these effects could be blocked by neutralizing IL-17A or CXCL12. In vivo, an anti-IL-17A antibody or a CXCR4 antagonist (AMD3100) could reverse the degree of EMT in lungs of the COPD mouse model. The IL-17A-induced EMT and increased CXCL12 expression occurred via extracellular signal-regulated kinase (ERK)/phosphorylated (p-)ERK pathways. Conclusion: This study showed that exposure of mice to CS and IL-17A stimulation upregulated CXCL12 expression and induced EMT by activating the ERK signaling pathway. These data offer a novel perspective regarding the molecular mechanism of CXCL12/CXCR4 signaling in IL-17A-induced EMT related to airway remodeling.

3.
Cytokine ; 180: 156676, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38857560

ABSTRACT

BACKGROUND: Cancer-associated fibroblasts (CAFs) and their secretion, C-X-C motif chemokine ligand 12 (CXCL12), play an important role in the development of lung adenocarcinoma (LUAD). Interleukin 17A (IL-17A) is also crucial in regulating tumor progression. Herein, we explored the specific relationships between these two factors and their mechanisms in the progression of LUAD. METHODS: Immunohistochemistry was utilized to assess the differential expression levels of IL-17A and CXCL12 in tumor versus normal tissues of LUAD patients, followed by gene correlation analysis. Cell counting kit-8 (CCK8), wound-healing and transwell assays were performed to investigate the effect of IL-17A on the function of LUAD cells. qPCR, immunofluorescence, immunohistochemistry and western blot analyses were conducted to elucidate the potential mechanism by which IL-17A facilitates the development of LUAD via CXCL12. Male BALB-C nude mice were used to explore the role of IL-17A in subcutaneous LUAD mouse models. RESULTS: Elevated expression levels of IL-17A and CXCL12 were observed in LUAD tissues, exhibiting a positive correlation. Further studies revealed that IL-17A could stimulate CAFs to enhance the release of CXCL12, thereby facilitating the growth, proliferation, and metastasis of LUAD. The binding of CXCL12 to its specific receptor influences the activation of the Wnt/ß-Catenin pathway, which in turn affects the progression of LUAD. In vivo experiments have demonstrated that IL-17A enhances the growth of LUAD tumors by facilitating the secretion of CXCL12. Conversely, inhibiting CXCL12 has been demonstrated to impede tumor growth. CONCLUSIONS: We discovered that IL-17A promotes the release of CAFs-derived CXCL12, which in turn facilitates the development of LUAD via the Wnt/ß-Catenin signaling pathway.


Subject(s)
Adenocarcinoma of Lung , Cancer-Associated Fibroblasts , Chemokine CXCL12 , Disease Progression , Interleukin-17 , Lung Neoplasms , Mice, Inbred BALB C , Mice, Nude , Wnt Signaling Pathway , Interleukin-17/metabolism , Chemokine CXCL12/metabolism , Humans , Animals , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Mice , Male , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , beta Catenin/metabolism
4.
J Exp Clin Cancer Res ; 43(1): 3, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38163876

ABSTRACT

BACKGROUND: Lung cancer is a malignant tumor with the highest mortality worldwide. Abnormalities in the ubiquitin proteasome system are considered to be contributed to lung cancer progression with deleterious effects. DDB1 and CUL4 associated factor 13 (DCAF13) is a substrate receptor of the E3 ubiquitin ligase CRL4, but its role in lung cancer remains unknown. In this study, we aimed to investigate the regulatory mechanisms of DCAF13 in lung adenocarcinoma (LUAD). METHODS: So as to investigate the effect of DCAF13 on lung adenocarcinoma cell function using in vivo and in vitro. Mechanistically, we have identified the downstream targets of DCAF13 by using RNA-sequencing, as well as ubiquitination assays, co-immunoprecipitation, immunofluorescence, immunohistochemistry and chromatin immunoprecipitation - qPCR experiments. RESULTS: Our findings reveal that DCAF13 is a carcinogenic factor in LUAD, as it is highly expressed and negatively correlated with clinical outcomes in LUAD patients. Through RNA-sequencing, it has been shown that DCAF13 negatively regulates the p53 signaling pathway and inhibits p53 downstream targets including p21, BAX, FAS, and PIDD1. We also demonstrate that DCAF13 can bind to p53 protein, leading to K48-linked ubiquitination and degradation of p53. Functionally, we have shown that DCAF13 knockdown inhibits cell proliferation and migration. Our results highlight the significant role of DCAF13 in promoting LUAD progression by inhibiting p53 protein stabilization and the p53 signaling pathway. Furthermore, our findings suggest that high DCAF13 expression is a poor prognostic indicator in LUAD, and DCAF13 may be a potential therapeutic target for treating with this aggressive cancer. CONCLUSIONS: The DCAF13 as a novel negative regulator of p53 to promote LUAD progression via facilitating p53 ubiquitination and degradation, suggesting that DCAF13 might be a novel biomarker and therapeutical target for LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Tumor Suppressor Protein p53/genetics , Factor XIII , Adenocarcinoma of Lung/genetics , Lung Neoplasms/genetics , Ubiquitination , Cell Proliferation , Signal Transduction , RNA , RNA-Binding Proteins
5.
Diagn Microbiol Infect Dis ; 108(3): 116170, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38176301

ABSTRACT

BACKGROUND: Mediastinitis and sternal osteitis are critical complications in cardiac surgery. Cases of these complications caused by Mycoplasma hominis are extremely rare. CASE PRESENTATION: We present a case of mediastinitis and sternal osteitis caused by M. hominis infection following ascending aortic replacement surgery. Whole gene sequencing analysis suggested the genitourinary tract as the most likely source of this M. hominis infection. Successful infection control was achieved through a regimen of moxifloxacin treatment. Additionally, a notable correlation was observed between serum levels of interleukin-6 and M. hominis infection. CONCLUSIONS: The significance of M. hominis as a potential cause of postoperative infection in cardiac surgery is still not fully recognized. Special attention should be paid to patients with bacteriologically negative infections, as M. hominis should not be disregarded, despite its rarity.


Subject(s)
Cardiac Surgical Procedures , Mediastinitis , Mycoplasma Infections , Osteitis , Humans , Mycoplasma hominis/genetics , Mediastinitis/diagnosis , Mediastinitis/drug therapy , Mediastinitis/etiology , Osteitis/diagnosis , Osteitis/drug therapy , Osteitis/complications , Cardiac Surgical Procedures/adverse effects , Postoperative Complications/diagnosis , Postoperative Complications/drug therapy , Mycoplasma Infections/diagnosis , Mycoplasma Infections/drug therapy
6.
Iran J Pharm Res ; 22(1): e135437, 2023.
Article in English | MEDLINE | ID: mdl-38444709

ABSTRACT

Background: Hemorrhage control and anti-infection play a crucial role in promoting wound healing in trauma-related injuries. Objectives: This study aimed to prepare nanoparticles with dual functions of hemostasis and antibacterial properties. Methods: The dual-functional nanoparticles (CDCA-PLL NPs) were developed using a self-assembly method based on the electrostatic forces between poly-L-lysine (PLL) and Chenodeoxycholic acid (CDCA). The physicochemical properties, hemostatic properties, and antibacterial activities were investigated. Results: The prepared nanoparticles displayed a spherical structure, exhibiting a high drug loading capacity, encapsulation efficiency, and good stability. The CDCA-PLL NPs could reduce the hemolysis caused by PLL and promote the proliferation of human fibroblasts, indicating excellent biosafety. Moreover, CDCA-PLL NPs demonstrated a shorter in vivo hemostasis time and reduced blood loss in mouse tail vein hemorrhage, femoral vein hemorrhage, femoral artery hemorrhage, and liver hemorrhage models. Also, CDCA-PLL NPs showed excellent antibacterial efficacy against E. coli and S. aureus. Conclusions: CDCA-PLL NPs have great potential to be extensively applied as a hemostatic and antibacterial agent in various clinical conditions.

SELECTION OF CITATIONS
SEARCH DETAIL