Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 227
Filter
1.
BMC Neurosci ; 25(1): 30, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965489

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) and frontotemporal dementia (FTD) are the two most common neurodegenerative dementias, presenting with similar clinical features that challenge accurate diagnosis. Despite extensive research, the underlying pathophysiological mechanisms remain unclear, and effective treatments are limited. This study aims to investigate the alterations in brain network connectivity associated with AD and FTD to enhance our understanding of their pathophysiology and establish a scientific foundation for their diagnosis and treatment. METHODS: We analyzed preprocessed electroencephalogram (EEG) data from the OpenNeuro public dataset, comprising 36 patients with AD, 23 patients with FTD, and 29 healthy controls (HC). Participants were in a resting state with eyes closed. We estimated the average functional connectivity using the Phase Lag Index (PLI) for lower frequencies (delta and theta) and the Amplitude Envelope Correlation with leakage correction (AEC-c) for higher frequencies (alpha, beta, and gamma). Graph theory was applied to calculate topological parameters, including mean node degree, clustering coefficient, characteristic path length, global and local efficiency. A permutation test was then utilized to assess changes in brain network connectivity in AD and FTD based on these parameters. RESULTS: Both AD and FTD patients showed increased mean PLI values in the theta frequency band, along with increases in average node degree, clustering coefficient, global efficiency, and local efficiency. Conversely, mean AEC-c values in the alpha frequency band were notably diminished, which was accompanied by decreases average node degree, clustering coefficient, global efficiency, and local efficiency. Furthermore, AD patients in the occipital region showed an increase in theta band node degree and decreased alpha band clustering coefficient and local efficiency, a pattern not observed in FTD. CONCLUSIONS: Our findings reveal distinct abnormalities in the functional network topology and connectivity in AD and FTD, which may contribute to a better understanding of the pathophysiological mechanisms of these diseases. Specifically, patients with AD demonstrated a more widespread change in functional connectivity, while those with FTD retained connectivity in the occipital lobe. These observations could provide valuable insights for developing electrophysiological markers to differentiate between the two diseases.


Subject(s)
Alzheimer Disease , Brain , Electroencephalography , Frontotemporal Dementia , Humans , Frontotemporal Dementia/physiopathology , Alzheimer Disease/physiopathology , Female , Male , Aged , Electroencephalography/methods , Brain/physiopathology , Middle Aged , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Neural Pathways/physiopathology
2.
J Physiol Biochem ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878215

ABSTRACT

Macrophage lipid accumulation is a critical contributor to foam cell formation and atherosclerosis. Tumor necrosis factor-α-induced protein 1 (TNFAIP1) is closely associated with cardiovascular disease. However, its role and molecular mechanisms in atherogenesis remain unclear. TNFAIP1 was knocked down in THP-1 macrophage-derived foam cells and apolipoprotein-deficient (apoE-/-) mice using lentiviral vector. The expression of lncRNA enhancing endothelial nitric oxide synthase expression (LEENE), Forkhead box O1 (FoxO1) and ATP binding cassette transporter A1 (ABCA1) was evaluated by qRT-PCR and/or western blot. Lipid accumulation in macrophage was assessed by high-performance liquid chromatography and Oil red O staining. RNA immunoprecipitation and RNA pull-down assay were performed to verify the interaction between LEENE and FoxO1 protein. Atherosclerotic lesions were analyzed using HE, Oil red O and Masson staining. Our results showed that TNFAIP1 was significantly increased in THP-1 macrophages loaded with oxidized low-density lipoprotein. Knockdown of TNFAIP1 enhanced LEENE expression, promoted the direct interaction of LEENE with FoxO1 protein, stimulated FoxO1 protein degradation through the proteasome pathway, induced ABCA1 transcription, and finally suppressed lipid accumulation in THP-1 macrophage-derived foam cells. TNFAIP1 knockdown also up-regulated ABCA1 expression, improved plasma lipid profiles, enhanced the efficiency of reverse cholesterol transport and attenuated lesion area in apoE-/- mice. Taken together, these results provide the first direct evidence that TNFAIP1 aggravates atherosclerosis by promoting macrophage lipid accumulation via the LEENE/FoxO1/ABCA1 signaling pathway. TNFAIP1 may represent a promising therapeutic target for atherosclerotic cardiovascular disease.

3.
Front Med (Lausanne) ; 11: 1401439, 2024.
Article in English | MEDLINE | ID: mdl-38873204

ABSTRACT

Objective: To analyze the clinical characteristics and prognostic impacts of SARS-CoV-2 Omicron infection among cancer inpatients during the December 2022 - February 2023 surge, in order to provide scientific evidence for clinical treatment and prevention and control measures. Methods: A retrospective analysis was conducted on the clinical features, prognosis, and vaccination status of cancer in-patients infected with the Omicron variant during the COVID-19 pandemic of December 2022 - February 2023. Results: A total of 137 cancer inpatients were included in the study, with a median age of 61 years, and 75 patients (54.74%) were male. The main symptoms were cough (69 cases, 50.36%), expectoration (60 cases, 43.80%), and fever (53 cases, 39.69%). Chest CT examination revealed bilateral pneumonia in 47 cases (34.31%, 47/137) and pleural effusion in 24 cases (17.52%, 24/137). Among the cancer patients, 116 cases (84.67%, 116/137) had solid tumors, and 21 cases (15.33%, 21/137) had hematologic malignancies, with the main types being breast cancer (25 cases, 18.25%) and lung cancer (24 cases, 17.52%). Among the cancer patients, 46 cases (33.58%) were asymptomatic, 81 cases (59.12%) had mild disease, 10 cases (7.30%) had severe infection, and 8 cases (5.84%) died. A total of 91 patients (66.42%) had been vaccinated, with 58 patients (42.34%) receiving three doses. Multivariate analysis showed that cerebral infarction and hypoproteinemia were risk factors for death from COVID-19 infection. Conclusion: Cancer patients infected with SARS-CoV-2 Omicron typically exhibit mild disease manifestations, but some cancer patients infected with the Omicron variant might progress to severe illness, and even death, necessitating close monitoring and attention during the early stages of infection. Additionally, the presence of cerebral infarction and hypoproteinemia significantly increases the risk of death.

4.
Front Med (Lausanne) ; 11: 1383252, 2024.
Article in English | MEDLINE | ID: mdl-38835792

ABSTRACT

Objective: To investigate the clinical characteristics and risk factors of patients with SARS-CoV-2 Omicron variant infection complicated with cardiovascular diseases. Methods: A retrospective analysis of general clinical data was conducted on patients with SARS-CoV-2 omicron infection complicated with hypertension, coronary heart disease, and heart failure admitted to one hospital in Guangdong Province from December 1, 2022, to February 28, 2023. Clinical symptoms, laboratory tests, imaging examinations, treatment, and clinical outcomes were collected. Multivariate logistic regression analysis was used to analyze the risk factors for mortality in patients with SARS-CoV-2 Omicron variant infection complicated with cardiovascular diseases. ROC curves were drawn to evaluate the predictive value of CRP, D-dimer, and CK-MB in predicting the risk of death. Results: A total of 364 confirmed cases were included, divided into the asymptomatic group, mild to moderate group, and severe to critically ill group based on the symptoms of COVID-19. There were 216 males (59.34%) and 148 females (40.66%), with a median age of 75 years. The differences between the three groups in terms of sex and age were statistically significant (p < 0.05). The top three underlying diseases were hypertension (288 cases, 79.12%), coronary heart disease (100 cases, 27.47%), and diabetes (84 cases, 23.08%). The differences in unvaccinated and triple-vaccinated patients among the three groups were statistically significant (p < 0.05). The common respiratory symptoms were cough in 237 cases (65.11%) and sputum production in 199 cases (54.67%). In terms of laboratory tests, there were statistically significant differences in neutrophils, lymphocytes, red blood cells, C-reactive protein, D-dimer, aspartate aminotransferase, and creatinine among the three groups (p < 0.05). In imaging examinations, there were statistically significant differences among the three groups in terms of unilateral pulmonary inflammation, bilateral pulmonary inflammation, and bilateral pleural effusion (p < 0.05). There were statistically significant differences among the three groups in terms of antibiotic treatment, steroid treatment, oxygen therapy, nasal cannula oxygen inhalation therapy, non-invasive ventilation, and tracheal intubation ventilation (p < 0.05). Regarding clinical outcomes, there were statistically significant differences among the three groups in terms of mortality (p < 0.05). Multivariate logistic regression analysis showed that CRP (OR = 1.012, 95% CI = 1.004-1.019) and D-dimer (OR = 1.117, 95% CI = 1.021-1.224) were independent risk factors for patient mortality. The predictive value of CRP, D-dimer, and CK-MB for the risk of death was assessed. D-dimer had the highest sensitivity (95.8%) in predicting patient mortality risk, while CRP had the highest specificity (84.4%). Conclusion: For patients with COVID-19 and concomitant cardiovascular diseases without contraindications, early administration of COVID-19 vaccines and booster shots can effectively reduce the mortality rate of severe cases. Monitoring biomarkers such as CRP, D-dimer, and CK-MB and promptly providing appropriate care can help mitigate the risk of mortality in patients.

5.
Angew Chem Int Ed Engl ; 63(27): e202406750, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38651747

ABSTRACT

Electrocatalytic reduction of nitrate to ammonia provides a green alternate to the Haber-Bosch method, yet it suffers from sluggish kinetics and a low yield rate. The nitrate reduction follows a tandem reaction of nitrate reduction to nitrite and subsequent nitrite hydrogenation to generate ammonia, and the ammonia Faraday efficiency (FE) is limited by the competitive hydrogen evolution reaction. Herein, we design a heterostructure catalyst to remedy the above issues, which consists of Ni nanosphere core and Ni(OH)2 nanosheet shell (Ni/Ni(OH)2). In situ Raman spectroscopy reveals Ni and Ni(OH)2 are interconvertible according to the applied potential, facilitating the cascade nitrate reduction synergistically. Consequently, it attains superior electrocatalytic nitrate reduction performance with an ammonia FE of 98.50 % and a current density of 0.934 A cm-2 at -0.476 V versus reversible hydrogen electrode, and exhibits an average ammonia yield rate of 84.74 mg h-1 cm-2 during the 102-hour stability test, which is highly superior to the reported catalysts tested under similar conditions. Density functional theory calculations corroborate the synergistic effect of Ni and Ni(OH)2 in the tandem reaction of nitrate reduction. Moreover, the Ni/Ni(OH)2 catalyst also possesses good capability for methanol oxidation and thus is used to establish a system coupling with nitrate reduction.

6.
Waste Manag ; 181: 168-175, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38615500

ABSTRACT

The recovery of valuable metals from used lithium batteries is essential from an environmental and resource management standpoint. However, the most widely used acid leaching method causes significant ecological harm. Here, we proposed a method of recovering Li and Fe selectively from used lithium iron phosphate batteries by using low-concentration organic acid and completing the closed-loop regeneration. Low-concentration oxalic acid is used to carry out PO43-, which is significantly less soluble in aqueous solution than Li, two-stage selective leaching Li, where the leaching rate of Li reaches 99 %, and the leaching rate of Fe is only 2.4 %. The leach solution is then decontaminated. The solubility of Li3PO4 in aqueous solution is much smaller than that of Li2C2O4, which was required to recover Li to change the pH and Li can be recovered as Li3PO4; Fe can be retrieved as FeC2O4·2H2O, and re-prepared into lithium iron phosphate.


Subject(s)
Ferric Compounds , Lithium , Oxalic Acid , Phosphates , Recycling , Oxalic Acid/chemistry , Phosphates/chemistry , Lithium/chemistry , Recycling/methods , Iron/chemistry , Electric Power Supplies
7.
J Chem Phys ; 160(13)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38577980

ABSTRACT

PtS2, a member of the group 10 transition metal dichalcogenides (TMDs), has received extensive attention because of its excellent electrical properties and air stability. However, there are few reports on the preparation of single-crystal PtS2 in the literature, and the growth mechanism of single crystal PtS2 is not well elucidated. In this work, we proposed a method of preparation that combines magnetron sputtering and chemical vapor transport to obtain monocrystalline PtS2 on a SiO2/Si substrate. By controlling the growth temperature and time, we have synthesized a single crystalline PtS2 of hexagonal shape and size of 1-2 µm on a silicon substrate. Combining the molecular dynamics simulation, the growth mechanism of single crystal PtS2 was investigated both experimentally and theoretically. The synthesis method has a short production cycle and low cost, which opens the door for the fabrication of other TMDs single crystals.

8.
Adv Sci (Weinh) ; 11(20): e2306507, 2024 May.
Article in English | MEDLINE | ID: mdl-38504456

ABSTRACT

The prevalence of infertility caused by endometrial defects is steadily increasing, posing a significant challenge to women's reproductive health. In this study, injectable "homing-like" bioactive decellularized extracellular matrix short-fibers (DEFs) of porcine skin origin are innovatively designed for endometrial and fertility restoration. The DEFs can effectively bind to endometrial cells through noncovalent dipole interactions and release bioactive growth factors in situ. In vitro, the DEFs effectively attracted endometrial cells through the "homing-like" effect, enabling cell adhesion, spreading, and proliferation on their surface. Furthermore, the DEFs effectively facilitated the proliferation and angiogenesis of human primary endometrial stromal cells (HESCs) and human umbilical vein endothelial cells (HUVECs), and inhibited fibrosis of pretreated HESCs. In vivo, the DEFs significantly accelerated endometrial restoration, angiogenesis, and receptivity. Notably, the deposition of endometrial collagen decreased from 41.19 ± 2.16% to 14.15 ± 1.70% with DEFs treatment. Most importantly, in endometrium-injured rats, the use of DEFs increased the live birth rate from 30% to an impressive 90%, and the number and development of live births close to normal rats. The injectable "homing-like" bioactive DEFs system can achieve efficient live births and intrauterine injection of DEFs provides a new promising clinical strategy for endometrial factor infertility.


Subject(s)
Endometrium , Live Birth , Female , Animals , Rats , Swine , Humans , Disease Models, Animal , Pregnancy , Decellularized Extracellular Matrix , Rats, Sprague-Dawley , Human Umbilical Vein Endothelial Cells
9.
Anal Methods ; 16(14): 2071-2076, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38505988

ABSTRACT

The thermal desorption (TD) technique is widely employed in modern mass spectrometry to facilitate the detection of non-volatile analytes. In this study, we developed a compact TD device based on a small resistance wire and coupled it with a self-aspirating corona discharge ionization (CDI) source to conduct direct MS analysis of various liquid and solid samples. Due to its small size and low heat capacity, the temperature of the TD module can be flexibly and rapidly modulated by controlling the power sequence. Multiple heating modes, including pulse heating (PH), isothermal heating, and step heating (SH), are realized and characterized, and then applied for the detection of different real samples. In particular, the PH mode is suitable for the simultaneous detection of multiple components in samples with relatively simple matrices, while the SH mode is capable of component separation. In addition, the sensitivity and quantitative capability of the TD-CDI system for DEP solutions were tested, showing acceptable stability with a relative standard deviation of about 6.7% and a detection limit of 0.088 ng. Overall, the developed TD-CDI system provides a simple, convenient, and versatile tool for direct mass spectrometry analysis of real samples.

10.
ACS Appl Mater Interfaces ; 16(13): 16164-16174, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38514249

ABSTRACT

Single-metal-site catalysts have recently aroused extensive research in electrochemical energy fields such as zinc-air batteries and water splitting, but their preparation is still a huge challenge, especially in flexible catalyst films. Herein, we propose a sublimation strategy in which metal phthalocyanine molecules with defined isolated metal-N4 sites are gasified by sublimation and then deposited on flexible single-wall carbon nanotube (SWCNT) films by means of π-π coupling interactions. Specifically, iron phthalocyanine anchored on the SWCNT film prepared was directly used to boost the cathodic oxygen reduction reaction of the zinc-air battery, showing a high peak power density of 247 mW cm-2. Nickel phthalocyanine and cobalt phthalocyanine were, respectively, stabilized on SWCNT films as the anodic and cathodic electrocatalysts for water splitting, showing a low potential of 1.655 V at 10 mA cm-2. In situ Raman spectra and theoretical studies demonstrate that highly efficient activities originate from strain-induced metal phthalocyanine on SWCNTs. This work provides a universal preparation method for single-metal-site catalysts and innovative insights for electrocatalytic mechanisms.

11.
Research (Wash D C) ; 7: 0336, 2024.
Article in English | MEDLINE | ID: mdl-38533181

ABSTRACT

Circular RNAs (circRNAs) play a critical regulatory role in degenerative diseases; however, their functions and therapeutic applications in intervertebral disc degeneration (IVDD) have not been explored. Here, we identified that a novel circATXN1 highly accumulates in aging nucleus pulposus cells (NPCs) accountable for IVDD. CircATXN1 accelerates cellular senescence, disrupts extracellular matrix organization, and inhibits mitochondrial respiration. Mechanistically, circATXN1, regulated by heterogeneous nuclear ribonucleoprotein A2B1-mediated splicing circularization, promotes progerin translocation from the cell nucleus to the cytoplasm and inhibits the expression of insulin-like growth factor 1 receptor (IGF-1R). To demonstrate the therapeutic potential of circATXN1, siRNA targeting the backsplice junction of circATNX1 was screened and delivered by tetrahedral framework nucleic acids (tFNAs) due to their unique compositional and tetrahedral structural features. Our siRNA delivery system demonstrates superior abilities to transfect aging cells, clear intracellular ROS, and enhanced biological safety. Using siRNA-tFNAs to silence circATXN1, aging NPCs exhibit reduced mislocalization of progerin in the cytoplasm and up-regulation of IGF-1R, thereby demonstrating a rejuvenated cellular phenotype and improved mitochondrial function. In vivo, administering an aging cell-adapted siRNA nucleic acid framework delivery system to progerin pathologically expressed premature aging mice (zmpste24-/-) can ameliorate the cellular matrix in the nucleus pulposus tissue, effectively delaying IVDD. This study not only identified circATXN1 functioning as a cell senescence promoter in IVDD for the first time, but also successfully demonstrated its therapeutic potential via a tFNA-based siRNA delivery strategy.

12.
Dalton Trans ; 53(6): 2703-2713, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38226458

ABSTRACT

The SrCoO3-δ system has broad application potential due to its diverse crystal structures, oxidation stoichiometric ratio, and significant electrical and magnetic properties. However, it faces the challenges of a complex crystal structure and oxygen defect control in this material system. Herein, we introduce oxygen defects into SrCoO3-δvia Er doping to regulate the structural, electrical and magnetic transport properties. Sr1-xErxCoO3-δ (x = 0-0.25) undergoes an evolution of structure and oxygen content (measured using the iodometric method) from hexagonal SrCoO2.626 (H + Co3O4) to cubic perovskite Sr0.9Er0.1CoO2.689 (CP) and finally to ordered tetragonal Sr0.8Er0.2CoO2.635 (OT). Among the three phases, Sr0.9Er0.1CoO2.689 (CP) exhibits the lowest resistivity, only 4.06 mΩ cm at room temperature, which is attributed to its high three-dimensional symmetry, overlap of O 2p and Co 3d orbitals at high oxygen ion concentration. Further introduction of Er ions and oxygen defects promotes the transformation from low spin Co4+ (LS, t52ge0g, S = 1/2) to high spin Co3+ (HS, t42ge2g, S = 2), and from the CoO6 octahedron (low magnetic moment transformation) to the CoO4.25 tetrahedron (high magnetic moment). The oxygen-deficient CoO4.25 layer appears, which can enhance the ordering of A sites and oxygen vacancies, and the CP phase transforms into room-temperature ferromagnetic Sr0.8Er0.2CoO2.635 (OT, TC∼330 K). Er ions provide unpaired electrons in the 2f orbital, which results in a strong magnetization of Sr0.8Er0.2CoO2.635 (OT, 4.66 µB/Co) at low temperatures.

13.
J Diabetes Complications ; 38(1): 108665, 2024 01.
Article in English | MEDLINE | ID: mdl-38103536

ABSTRACT

OBJECTIVE: The occurrence of chronic vascular complications in individuals with type 2 diabetes mellitus(T2DM) is influenced by multiple factors. This study aims to analyze the correlation between serum 25-(OH)D3 levels and other risk factors with the formation and severity of arterial plaques in the lower extremities, and explore its role in clinical diagnosis and treatment. METHODS: A total of 628 Chinese patients with T2DM were included in this study. Based on the intima-media thickness (IMT) and plaque echogenicity measured by lower extremity vascular ultrasound, the patients were divided into the no plaque group(NP), low-risk plague group(LP), moderate-risk plague group(MP), and severe-risk plague group(SP). Based on 25-(OH)D3 levels, patients were categorized as vitamin D deficient group (VDD,25-(OH)D3 ≤ 20 ng/mL), vitamin D insufficient group (VDI,25-(OH)D3 between>20 ng/mL and < 30 ng/mL), and vitamin D sufficient group (VDS,25-(OH)D3 ≥ 30 ng/mL). The correlation between the severity of lower extremity arterial plaques and serum 25-(OH)D3 levels was analyzed, as well as the risk factors for lower extremity arterial plaque formation in patients with T2DM. RESULTS: The levels of 25-(OH)D3 in patients with arterial plaques were significantly lower than those in the NP (p = 0.002). Additionally, with the increasing severity of lower extremity arterial plaques, 25-(OH)D3 levels also decreased significantly (p = 0.01). The proportion of patients with sufficient 25-(OH)D3 levels was highest in NP, while the proportion of deficient and insufficient groups was higher in LP (p<0.001). Multivariate logistic regression analysis showed that low levels of 25-(OH)D3 were an independent risk factor for lower extremity arterial plaques in T2DM patients. Compared to patients with 25-(OH)D3>20 ng/mL, the odds ratios for the formation of moderate-risk plaques were 2.525 (95 % CI: 1.45-4.39) in patients with 25-(OH)D3 ≤ 20 ng/mL, and 2.893 (95 % CI: 1.59-5.26) for the formation of high-risk plaques. CONCLUSION: Serum 25-(OH)D3 levels may be correlated with the occurrence and severity of lower extremity arterial plaques in patients with T2DM. Low serum 25-(OH)D3 concentration is a risk factor for lower extremity vascular lesions.


Subject(s)
Diabetes Mellitus, Type 2 , Plague , Plaque, Atherosclerotic , Vitamin D Deficiency , Humans , Diabetes Mellitus, Type 2/epidemiology , Cross-Sectional Studies , Carotid Intima-Media Thickness , Plague/complications , Risk Factors , Plaque, Atherosclerotic/complications , Plaque, Atherosclerotic/diagnostic imaging , Plaque, Atherosclerotic/epidemiology , Vitamin D , Lower Extremity/diagnostic imaging , Lower Extremity/blood supply , Vitamin D Deficiency/complications
14.
Mater Today Bio ; 23: 100857, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38075259

ABSTRACT

Endometrium is suspectable to severe injury due to recurrent abortion, curettage or intrauterine infection which could lead to pathological conditions and sabotage women's fertility. Promoting endometrium regeneration is the core of the treatments to uterine related infertility. Patients who received traditional treatments can only expect limited effects, thereby novel therapies are badly in need to promote endometrium regeneration. Here we generated a decellularized extracellular matrix (ECM) from porcine dermis, and composited adipose stem cell derived exosomes (ADSC-exos) on it (ECM@ADSC-exos). In vitro experiments proved that ECM@ADSC-exos exhibited good cytocompatibility and could improve cell proliferation, migration and angiogenesis. We also observed that, when implanted in the uterine cavity of a rat model of endometrium injury, ECM@ADSC-exos improved endometrium regeneration, enhanced local angiogenesis, promoted myometrium repair and finally preserved fertility. Our results proved that ECM@ADSC-exos could be a novel option for endometrium regeneration.

15.
Phys Chem Chem Phys ; 25(45): 31301-31311, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37955628

ABSTRACT

The development of high performance two-dimensional thermoelectric (TE) materials is crucial for enhancing the conversion of waste heat into electricity and for achieving the transition to new energy. In recent years, two-dimensional Dirac materials with high carrier mobility and non-trivial topological properties have been expected to extend the application of carbon-based materials in the TE field. However, research on the TE properties of two-dimensional Dirac materials is still scarce, and the relevant physical mechanisms that affect the TE figure of merit of the materials are still unclear. Therefore, we carefully selected a typical and experimentally synthesized Dirac structure, graphenylene, and systematically studied its thermal transport and electrical transport properties using density functional theory (DFT) and Boltzmann transport theory. The results show that the ZT value of graphenylene exhibits an extremely significant anisotropy. There is a significant discrepancy in the figure of merit (ZT) values of n-type and p-type systems at the optimum doping concentration, i.e., the ZT value of the n-type system (0.49) is one order of magnitude greater than that of the p-type system (0.06). Graphenylene exhibits excellent electronic performance due to its unique electronic band structure and has an extremely high conductivity (for the n-type system, electrical conductivity at room temperature is 109 S m-1). Interestingly, graphenylene has an unusually higher ZT at low temperature (0.5 at 300 K) than at high temperature (0.3 at 800 K) for n-type doping along the x-axis, contrary to the conventional view that higher ZT values exist in the high temperature range. This work provides a deep insight into the TE properties of two-dimensional Dirac carbon materials and offers new perspectives for enhancing the TE performance and application of carbon-based nanomaterials.

16.
Biomed Eng Online ; 22(1): 105, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37919731

ABSTRACT

BACKGROUND AND OBJECTIVES: This study focused on changes in intestinal motility during different sleep stages based on long-term bowel sounds. METHODS: A modified higher order statistics algorithm was devised to identify the effective bowel sound segments. Next, characteristic values (CVs) were extracted from each bowel sound segment, which included 4 time-domain, 4 frequency-domain and 2 nonlinear CVs. The statistical analysis of these CVs corresponding to the different sleep stages could be used to evaluate the changes in intestinal motility during sleep. RESULTS: A total of 6865.81 min of data were recorded from 14 participants, including both polysomnographic data and bowel sound data which were recorded simultaneously from each participant. The average accuracy, sensitivity and specificity of the modified higher order statistics detector were 96.46 ± 2.60%, 97.24 ± 2.99% and 94.13 ± 4.37%. In addition, 217088 segments of effective bowel sound corresponding to different sleep stages were identified using the modified detector. Most of the CVs were statistically different during different sleep stages ([Formula: see text]). Furthermore, the bowel sounds were low in frequency based on frequency-domain CVs, high in energy based on time-domain CVs and low in complexity base on nonlinear CVs during deep sleep, which was consistent with the state of the EEG signals during deep sleep. CONCLUSIONS: The intestinal motility varies by different sleep stages based on long-term bowel sounds using the modified higher order statistics detector. The study indicates that the long-term bowel sounds can well reflect intestinal motility during sleep. This study also demonstrates that it is technically feasible to simultaneously record intestinal motility and sleep state throughout the night. This offers great potential for future studies investigating intestinal motility during sleep and related clinical applications.


Subject(s)
Gastrointestinal Motility , Sleep Stages , Humans , Algorithms
17.
Phys Chem Chem Phys ; 25(48): 32979-32988, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38031515

ABSTRACT

The exploration of high-quality and efficient electrocatalysts is crucial for the advancement of clean energy utilization and the development of energy conversion technologies. Recently, high-entropy alloys (HEA) have been actively explored as viable catalysts for water electrolysis due to their unique performance such as wide scope for compositional adjustments, excellent catalytic activity, and outstanding stability. However, the mechanism of synergistic oxygen evolution by HEA electrocatalysts at multiple sites has not been systematically and clearly demystified. Herein, in this paper, Pt is combined with inexpensive metals Ni, Cu, Fe, and Co to form a stable HEA structure. The synergistic catalytic mechanism of the PtNiFeCoCu HEA in the oxygen evolution reaction (OER) has been investigated, and the structure has been demonstrated to exhibit excellent hydrogen evolution reaction (HER) activity. The results suggest that the PtNiFeCoCu HEA catalyst achieved a lower overpotential of 0.44 V in the acidic OER, demonstrating that the PtNiFeCoCu HEA is a bifunctional electrocatalyst. In addition, oxygen intermediates are synergistically adsorbed on the surface of high-entropy alloys through multimetallic sites, which breaks the limitation of limited active sites. Further calculations indicated that the favorable OER activity of the catalyst originated from the strong associative coupling of the d orbitals of the synergistic metal sites to the 2p orbitals of the oxygen intermediates with enhanced synergistic effects. This work further elucidates the multisite synergistic catalysis of the PtNiFeCoCu HEA, providing a unique perspective to uncover the source of the high catalytic performance of HEA electrocatalysts.

18.
Phys Chem Chem Phys ; 25(44): 30296-30307, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37930335

ABSTRACT

The shortage of freshwater is a critical concern for contemporary society, and reverse osmosis desalination technology has gathered considerable attention as a potential solution to this problem. It has been recognized that the desalination process involving water flow through angstrom-sized pores has tremendous potential. However, it is challenging to obtain angstrom-sized pore structures with internal mass transfer and surface/interface properties matching the application conditions. Herein, a two-dimensional (2D) zeolite-like carbon structure (Carzeo-ANG) was constructed with unique angstrom-sized pores in the zeolite structure; then, the surface/interfacial transport behavior and percolation effect of the Carzeo-ANG desalination membrane were evaluated by density functional theory (DFT) calculations and classical molecular dynamics. The first-principles calculations in density functional theory were implemented through the Vienna ab initio simulation package (VASP), which is a commercial package for the simulation of carbon-based materials. The results show that Carzeo-ANG is periodically distributed with angstrom-sized pores (effective diameter = 5.4 Å) of dodecacyclic carbon rings, which ensure structural stability while maintaining sufficient mechanical strength. The remarkable salt-ion adsorption properties and mass transfer activity combined with the reasonable density distribution and free energy barrier for water molecules endow the membrane with superior desalination ability. At the pressure of 80 MPa, the rejection efficiency of Cl- and Na+ were 100% and 96.25%, and the membrane could achieve a water flux of 132.71 L cm-2 day-1 MPa-1. Moreover, the interconnected electronic structure of Carzeo-ANG imparts a self-cleaning effect.

19.
Phys Chem Chem Phys ; 25(41): 28326-28335, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37840459

ABSTRACT

The development of highly active oxygen evolution reaction (OER) catalysts with fast kinetics is crucial for the advancement of clean energy and fuel conversion to achieve a sustainable energy future. Recently, the synergistic effect of single-atom doping and multicomponent clusters has been demonstrated to significantly improve the catalytic activity of materials. However, such synergistic effects involving multi-electron and proton transfer processes are quite complex and many crucial mechanistic details need be well comprehended. We ingeniously propose a catalyst, (Fed-FeSc)@NiS2 (d stands for doping and c stands for clustering), with Fe and FeS acting synergistically on a NiS2 substrate. Specifically, fully dynamic monitoring of multiple active sites at the (Fed-FeSc)@NiS2 interface using metadynamics is innovatively performed. The results show that the rate determining step value at the overpotential of 1.23 V for the synergistic (Fed-FeSc)@NiS2 is 1.55 V, decreased by 6.67% and 35.29% compared to those of the independently acting single-atom doping and multi-clusters. The unique synergistic structure dramatically increases the d-band centre of the Fe site (-1.45 eV), endowing (Fed-FeSc)@NiS2 with more activity than conventional commercial Ir-C catalysts. This study provides insights into the synergistic effects of single-atom doping and multi-component clusters, leading to exploratory inspiration for the design of highly efficient OER catalysts.

20.
J Agric Food Chem ; 71(40): 14649-14665, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37755883

ABSTRACT

In this study, blueberry (Vaccinium ssp.) anthocyanins (VA) and blackberry (Rubus L.) anthocyanins (RA) were used to investigate the effects on metabolic syndrome (MetS) and the potential mechanisms. Importantly, all of the data presented in this study were obtained from experiments conducted on mice. As a result, VA and RA reduced body weight gain and fat accumulation while improving liver damage, inflammation, glucose, and lipid metabolism induced by a high-fat diet. Moreover, VA and RA regulated the gut microbiota composition, decreasing the pro-obesity and proinflammation bacteria taxa, such as the phylum Actinobacterium and the genera Allobaculum and Bifidobacterium, and increasing those negatively associated with obesity and inflammation, such as the phylum Bacteroidetes and the genera Prevotella and Oscillospira. Additionally, the supplementation with VA and RA reversed the elevated levels of valeric, caproic, and isovaleric acids observed in the high-fat diet (HFD) group, bringing them closer to the levels observed in the Chow group. This reversal indicated that alterations in the composition and abundance of gut microbiota may contribute to the restoration of short-chain fatty acids (SCFAs) levels. Additionally, PICRUSt2 exhibited that cyanamino acid metabolism and betalain biosynthesis might be the major metabolic pathways in the HVA group compared with the HFD group, while in the HRA group, it was the phosphotransferase system. These findings suggest that VA and RA can ameliorate MetS by modulating the gut microbiota and production of SCFAs.

SELECTION OF CITATIONS
SEARCH DETAIL
...