Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Int J Biol Macromol ; 279(Pt 3): 135504, 2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39255884

ABSTRACT

The digestion of starch have been of great interest, yet little is known about the structure changes and structure-digestibility relationships of waxy rice starch during digestion. In this study, waxy rice starch from Indica and Japonica cultivars were in vitro pre-digested for different times, and the changes in their structure and properties were investigated, including granule morphology, chain length distribution, short-range ordered structure, crystallinity, thermal properties, and digestibility. Pre-digested Indica and Japonica waxy rice starch had the characteristics of porous starch, showing similar surface erosion and pores. With the prolongation of pre-digestion time, the amylose content decreased by 0.74 %-2.69 %, the proportion of amylopectin short A chain (DP6-12) and B1 chain (DP13-24) decreased, and the proportion of long B2 (DP25-36) and B3 chain (DP ≥ 37) increased, especially in pre-digested Indica waxy rice starch. The short- and long-range ordered structure of pre-digested starch increased, manifested by an increase in the absorbance ratio at 1047/1022 cm-1, a decrease at 1022/995 cm-1, and an increase in relative crystallinity, leading to higher gelatinization temperature and enthalpy. Pre-digested waxy rice starch had a reduced rapidly digestible starch of 18.27 %-33.93 % and an increased resistant starch of 29.51 %-41.32 %, which will be applied in functional starch and healthy starchy foods.

2.
J Control Release ; 374: 39-49, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39111597

ABSTRACT

Immunological adjuvants are vaccine components that enhance long-lasting adaptive immune responses to weakly immunogenic antigens. Monophosphoryl lipid A (MPLA) is a potent and safe vaccine adjuvant that initiates an early innate immune response by binding to the Toll-like receptor 4 (TLR4). Importantly, the binding and recognition process is highly dependent on the monomeric state of MPLA. However, current vaccine delivery systems often prioritize improving the loading efficiency of MPLA, while neglecting the need to maintain its monomeric form for optimal immune activation. Here, we introduce a Pickering emulsion-guided MPLA monomeric delivery system (PMMS), which embed MPLA into the oil-water interface to achieve the monomeric loading of MPLA. During interactions with antigen-presenting cells, PMMS functions as a chaperone for MPLA, facilitating efficient recognition by TLR4 regardless of the presence of lipopolysaccharide-binding proteins. At the injection site, PMMS efficiently elicited local immune responses, subsequently promoting the migration of antigen-internalized dendritic cells to the lymph nodes. Within the draining lymph nodes, PMMS enhanced antigen presentation and maturation of dendritic cells. In C57BL/6 mice models, PMMS vaccination provoked potent antigen-specific CD8+ T cell-based immune responses. Additionally, PMMS demonstrated strong anti-tumor effects against E.G7-OVA lymphoma. These data indicate that PMMS provides a straightforward and efficient strategy for delivering monomeric MPLA to achieve robust cellular immune responses and effective cancer immunotherapy.


Subject(s)
Adjuvants, Immunologic , Dendritic Cells , Emulsions , Lipid A , Mice, Inbred C57BL , Toll-Like Receptor 4 , Animals , Lipid A/analogs & derivatives , Lipid A/administration & dosage , Lipid A/chemistry , Dendritic Cells/immunology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/chemistry , Vaccination/methods , Female , Mice , Drug Delivery Systems , Adjuvants, Vaccine/administration & dosage , Adjuvants, Vaccine/chemistry , Antigen Presentation , Ovalbumin/administration & dosage , Ovalbumin/immunology , Cancer Vaccines/administration & dosage , Cancer Vaccines/immunology
3.
Talanta ; 279: 126620, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39068829

ABSTRACT

In this study, a nanozyme (ZIF-Co-Cys) with high oxidase-like catalytic activity was prepared, and a ratiometric fluorescent/photothermal dual-mode probe was constructed for organophosphorus pesticides (OPs) detection based on the competitive effect of ZIF-Co-Cys and the enzymatic reaction product of acid phosphatase (ACP) on o-phenylenediamine and the inhibition effect of OPs on ACP activity. Using dimethyl dichloroviny phosphate (DDVP) as the model, both the fluorescence intensity ratio and the temperature change of the probe solution exhibited an excellent correlation with OPs concentration. The detection limits were 1.64 ng/mL and 0.084 ng/mL, respectively. Additionally, the detection of DDVP residues in real samples verified the outstanding anti-interference and accuracy of the probe. This work not only provided a complementary dual-mode method for the accurate and rapid detection of OPs residues in complex samples, but also supplied a new insight into the design of a multi-mode sensing platform based on the cascade reaction of nanozyme.


Subject(s)
Fluorescent Dyes , Pesticide Residues , Fluorescent Dyes/chemistry , Pesticide Residues/analysis , Pesticide Residues/chemistry , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/analysis , Acid Phosphatase/analysis , Acid Phosphatase/chemistry , Acid Phosphatase/metabolism , Spectrometry, Fluorescence/methods , Limit of Detection , Dichlorvos/analysis , Temperature
4.
Food Res Int ; 191: 114711, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059957

ABSTRACT

The complexation of physically modified starch with fatty acids is favorable for the production of resistant starch. However, there is a lack of information on the effect of ultrasonication (UC) on the structure and properties of starch complexes and the molecular mechanism of the stabilization. Here, the multi-scale structure and in vitro digestive properties of starch-fatty acid complexes before and after UC were investigated, and the stabilization mechanisms of starch and fatty acids were explored. The results showed that the physicochemical properties and multi-scale structure of the starch-fatty acid complexes significantly changed with the type of fatty acids. The solubility and swelling power of the starch-fatty acid complexes were significantly decreased after UC (P < 0.05), which facilitated the binding of starch with fatty acids. The XRD results revealed that after the addition of fatty acids, the starch-fatty acid complexes showed typical V-shaped complexes. In addition, the starch-fatty acid complexes showed a significant increase in complexing index, improved short-range ordering and enhanced thermal stability. However, the differences in the structure and properties of the fatty acids themselves resulted in no significant improvement in the multi-scale structure of maize starch-palmitic acid by UC. In terms of digestibility, especially the complexes after UC were more compact in structure, which increased the difficulty of enzymatic digestion and thus slowed down the digestion process. DFT calculations and combined with FT-IR analysis showed that non-covalent interactions such as hydrogen bonding and hydrophobic interactions were the main driving force for the formation of the complexes, with binding energies (lauric acid, myristic acid and palmitic acid) of -30.50, -22.14 and -14.10 kcal/mol, respectively. Molecular dynamics simulations further confirmed the molecular mechanism of inclusion complex formation and stabilization. This study is important for the regulation of starchy foods by controlling processing conditions, and provides important information on the role of fatty acids in the regulation of starch complexes and the binding mechanism.


Subject(s)
Digestion , Fatty Acids , Solubility , Starch , Starch/chemistry , Fatty Acids/chemistry , Sonication , Palmitic Acid/chemistry , Zea mays/chemistry , X-Ray Diffraction
5.
J Sci Food Agric ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38895880

ABSTRACT

BACKGROUND: Recent studies have shown that the wettability of protein-based emulsifiers is critical for emulsion stability. However, few studies have been conducted to investigate the effects of varying epigallocatechin gallate (EGCG) concentrations on the wettability of protein-based emulsifiers. Additionally, limited studies have examined the effectiveness of soy protein-EGCG covalent complex nanoparticles with improved wettability as emulsifiers for stabilizing high-oil-phase (≥ 30%) curcumin emulsions. RESULTS: Soy protein isolate (SPI)-EGCG complex nanoparticles (SPIEn) with improved wettability were fabricated to stabilize high-oil-phase curcumin emulsions. The results showed that EGCG forms covalent bonds with SPI, which changes its secondary structure, enhances its surface charge, and improves its wettability. Moreover, SPIEn with 2.0 g L -1 EGCG (SPIEn-2.0) exhibited a better three-phase contact angle (56.8 ± 0.3o) and zeta potential (-27 mV) than SPI. SPIEn-2.0 also facilitated the development of curcumin emulsion gels at an oil volume fraction of 0.5. Specifically, the enhanced network between droplets as a result of the packing effects and SPIEn-2.0 with inherent antioxidant function was more effective at inhibiting curcumin degradation during long-term storage and ultraviolet light exposure. CONCLUSION: The results of the present study indicate that SPIEn with 2.0 g L -1 EGCG (SPIEn-2.0) comprises the optimum conditions for fabricating emulsifiers with improved wettability. Additionally, SPIEn-0.2 can improve the physicochemical stability of high-oil-phase curcumin emulsions, suggesting a novel strategy to design and fabricate high-oil-phase emulsion for encapsulating bioactive compounds. © 2024 Society of Chemical Industry.

6.
Food Chem ; 457: 140050, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38901348

ABSTRACT

Myofibrillar protein (MP) gels are susceptible to oxidation, which can be prevented by complexing with hydrophilic polyphenols, but may cause gel deterioration. Sodium metabisulfite (Na2S2O5) has been used to induce self-assembly of MP and analyze the impact of self-assembly on the quality of composite gels containing high amounts of (-)-epigallocatechin gallate (EGCG). Hydrophobic forces were confirmed as the main driver of self-assembly. Self-assembly reduced the size of the MP-EGCG complex to approximately 670 nm and increased the gel's hydrophobic force by approximately 3.6-fold. The maximum hardness of the Na2S2O5-treated MP-EGCG composite gel was 52.43 g/kg, which was approximately 49% greater than pure MP gel. After oxidative treatment, the Na2S2O5-treated MP-EGCG composite gel had considerably lower carbonyl and dityrosine levels (2.47-µmol/g protein and 450 a.u.) than the control (8.37-µmol/g protein and 964 a.u.). Therefore, Na2S2O5 shows potential as a cost-effective additive for alleviating MP limitations in the food industry.


Subject(s)
Carps , Catechin , Gels , Muscle Proteins , Sulfites , Animals , Gels/chemistry , Sulfites/chemistry , Catechin/chemistry , Catechin/analogs & derivatives , Muscle Proteins/chemistry , Fish Proteins/chemistry , Hydrophobic and Hydrophilic Interactions , Oxidation-Reduction , Myofibrils/chemistry
7.
Food Chem ; 454: 139830, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38820633

ABSTRACT

In this study, the ß-cyclodextrin encapsulated betanin (BET@ß-CD) with improved thermal stability and retention as well as the berberine (BBR) with aggregate induced luminescence effect were incorporated into corn amylose (CA) biomatrix to develop colorimetric/fluorescent dual-channel smart film. Results shown that the added functional components were uniformly distributed in the film matrix. The high tensile strength (78.87%), low water solubility (31.15%) and water vapor permeability (1.24 × 10-10 g Pa-1 s-1 m-1) of the film predicted its acceptable stability. It was worth mentioning that the film displayed excellent responsiveness to volatile ammonia (0.025-25 mg/mL) with at least 4 times recyclability. Application experiment demonstrated that the film can achieve macroscopic dynamic monitoring of the freshness of shrimps stored at 25 °C, 4 °C, -20 °C under daylight (red to yellow) and UV light (yellow-green to blue-green). Thus, the study suggests an attractive and effective strategy for constructing dual-mode smart packaging materials for food freshness detection.


Subject(s)
Berberine , Betacyanins , Food Packaging , Starch , beta-Cyclodextrins , beta-Cyclodextrins/chemistry , Animals , Food Packaging/instrumentation , Betacyanins/chemistry , Berberine/chemistry , Starch/chemistry , Solubility
8.
Int J Biol Macromol ; 268(Pt 2): 131764, 2024 May.
Article in English | MEDLINE | ID: mdl-38657935

ABSTRACT

This study aimed to improve the mechanical properties of wheat starch gels (WSG) and the stability and bioaccessibility of resveratrol (Res) in prolamin nanoparticles. Res-loaded gliadin (Gli), zein, deamidated gliadin (DG) and deamidated zein (DZ) nanoparticles were filled in WSG. The hardness, G' and G'' of WSG were notably increased. It can be attributed to the more ordered and stable structure induced by the interaction of prolamin nanoparticles and starch. The Res retention of nanoparticles and nanoparticle-filled starch gels was at least 24.6 % and 36.0 % higher than free Res upon heating. When exposed to ultraviolet, the Res retention was enhanced by over 6.1 % and 37.5 %. The in-vitro digestion demonstrated that the Res releasing percentage for nanoparticle-filled starch gels was 25.8 %-38.7 % lower than nanoparticles in the simulated stomach, and more Res was released in the simulated intestine. This resulted in a higher bioaccessibility of 82.1 %-93.2 %. The bioaccessibility of Res in Gli/Res/WSG and DG/Res/WSG was greater than that of Zein/Res/WSG and DZ/Res/WSG. More hydrophobic interactions occurred between Res and Gli, DG. The interactions between Res and zein, DZ were mainly hydrogen bonding. The microstructure showed that nanoparticles exhibited dense spherical structures and were uniformly embedded in the pores of starch gels.


Subject(s)
Gels , Nanoparticles , Prolamins , Resveratrol , Starch , Starch/chemistry , Resveratrol/chemistry , Resveratrol/pharmacokinetics , Nanoparticles/chemistry , Gels/chemistry , Prolamins/chemistry , Zein/chemistry , Drug Carriers/chemistry , Triticum/chemistry , Gliadin/chemistry
9.
J Agric Food Chem ; 72(15): 8784-8797, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38566473

ABSTRACT

Food protein carriers from different sources might have distinct stabilizing and enhancing effects on the same small molecule. To elucidate the molecular mechanism, five different sourced proteins including soy protein isolates (SPIs), whey protein isolates (WPIs), edible dock protein (EDP), Tenebrio molitor protein (TMP), and yeast protein (YP) were used to prepare protein hydrogels for delivering myricetin (Myr). The results suggested that the loading capacity order of Myr in different protein hydrogels was EDP (11.5%) > WPI (9.3%) > TMP (8.9%) > YP (8.0%) > SPI (7.6%), which was consistent with the sequence of binding affinity between Myr and different proteins. Among five protein hydrogels, EDP had an optimum loading ability since it possessed the highest hydrophobic amino acid content (45.52%) and thus provided a broad hydrophobic cavity for loading Myr. In addition, these protein-Myr composite hydrogels displayed the core-shell structure, wherein hydrogen bonding and hydrophobic interaction were the primary binding forces between proteins and Myr. Moreover, the thermal stability, storage stability, and sustained-release properties of Myr were significantly enhanced via these protein delivery systems. These findings can provide scientific guidance for deeper utilization of food alternative protein sources.


Subject(s)
Flavonoids , Micelles , Flavonoids/chemistry , Hydrogels
10.
Int J Biol Macromol ; 264(Pt 2): 130776, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38471614

ABSTRACT

The present study focused on the extraction of water-soluble dietary fiber (CSDF) and water-insoluble dietary fiber (CIDF) from celery. It investigated their effects on glutinous rice starch's (GRS) physicochemical, structural, and digestive properties. The results showed that as the addition of the two dietary fibers increased, they compounded with GRS to varying degrees, with the complexing index reaching 69.41 % and 60.81 %, respectively. The rheological results indicated that the two dietary fibers reduced the viscosity of GRS during pasting and inhibited the short-term regrowth of starch. The FTIR and XRD results revealed that the two fibers interacted with GRS through hydrogen bonding, effectively inhibiting starch retrogradation. Furthermore, both fibers increased the pasting temperature of GRS, thus delaying its pasting and exhibiting better thermal stability. Regarding digestibility, the starch gels containing dietary fibers exhibited significantly reduced digestibility, with RS significantly increased by 8.15 % and 8.95 %, respectively. This study provides insights into the interaction between two dietary fibers and GRS during processing. It enriches the theoretical model of dietary fiber-starch interaction and provides a reference for the application development of starch-based functional foods.


Subject(s)
Apium , Oryza , Oryza/chemistry , Starch/chemistry , Dietary Fiber , Viscosity , Water
11.
Food Chem ; 447: 138992, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38503066

ABSTRACT

The low solubility limits the utilization of other functional characteristics of wheat gluten (WG). This study effectively improved the solubility of WG through protease modification and explored the potential mechanism of protease modification to enhance the solubility of WG, further stimulating the potential application of WG in the food industry. Solubility of WG modified with alkaline protease, complex protease, and neutral protease was enhanced by 98.99%, 54.59%, and 51.68%, respectively. Notably, the content of ß-sheet was reduced while the combined effect of hydrogen bond and ionic bond were increased after protease modification. Meanwhile, the reduced molecular size and viscoelasticity as well as the elevated surface hydrophobicity, thermostability, water absorption capacity, and crystallinity were observed in modified WG. Moreover, molecular docking indicated that protease was specifically bound to the amino acid residues of WG through hydrogen bonding, hydrophobic interaction, and salt bridge.


Subject(s)
Peptide Hydrolases , Triticum , Peptide Hydrolases/metabolism , Triticum/chemistry , Molecular Docking Simulation , Glutens/chemistry , Amino Acids/metabolism
12.
Int J Biol Macromol ; 261(Pt 2): 129869, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38302031

ABSTRACT

The digestibility of starch-based foods is receiving increased attention. To date, the full understanding of how including L-theanine (THE) can modify the structural and digestive properties of starch has not been fully achieved. Here, we investigated the multi-scale structure and digestibility of maize starch (MS) regulated by THE in ultrasound field and the molecular interactions. Ultrasound disrupted the structure of starch granules and opened the molecular chains of starch, promoting increased THE binding and producing more low-order or disordered crystal structures. In this case, the aggregation of starch molecules, especially amylose, was reduced, leading to increased mobility of the systems. As a result, the apparent viscosity, G', and G" were significantly decreased, which retarded the starch regeneration. Density functional theory calculations indicated that there were mainly non-covalent interactions between THE and MS, such as hydrogen bonding and van der Waals forces. These interactions were the main factors contributing to the decrease in the short-range ordering, the helical structure, and the enthalpy change (ΔH) of MS. Interestingly, the rapidly digestible starch (RDS) content of THE modified MS (MS-THE-30) decreased by 17.89 %, while the resistant starch increased to 26.65 %. These results provide new strategies for the safe production of resistant starch.


Subject(s)
Glutamates , Resistant Starch , Zea mays , Zea mays/chemistry , Resistant Starch/metabolism , Ultrasonics , Starch/chemistry , Amylose/chemistry , Digestion
13.
Int J Biol Macromol ; 263(Pt 2): 130331, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403209

ABSTRACT

This study aimed to investigate the multiscale structure, physicochemical properties, and in vitro digestibility of black rice starch (BRS) and gallic acid (GA) complexes prepared using varying ultrasound powers. The findings revealed that ultrasonic treatment disrupted BRS granules while enhancing the composite degree with GA. The starch granules enlarged and aggregated into complexes with uneven surfaces. Moreover, the crystallinity of the BRS-GA complexes increased to 22.73 % and formed V6-I-type complexes through non-covalent bonds. The increased short-range ordering of the complexes and nuclear magnetic resonance hydrogen (1H NMR) further indicated that the BRS and GA molecules interacted mainly through non-covalent bonds such as hydrogen bonds. Additionally, ultrasound reduced the viscoelasticity of the complexes while minimizing the mass loss of the complexes at the same temperature. In vitro digestion results demonstrated an increase in resistant starch content up to 37.60 % for the BRS-GA complexes. Therefore, ultrasound contributes to the formation of V-typed complexes of BRS and GA, which proves the feasibility of using ultrasound alone for the preparation of starch and polyphenol complexes while providing a basis for the multiscale structure and digestibility of polyphenol and starch complexes.


Subject(s)
Oryza , Oryza/chemistry , Gallic Acid/chemistry , Digestion , Starch/chemistry , Polyphenols
14.
Int J Biol Macromol ; 259(Pt 1): 129243, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199535

ABSTRACT

This study aimed to investigate the influence of ball milling assisted treatment on the degree of substitution of octenyl succinic anhydride (OSA) modified highland barley starch (HBS) and on the physicochemical properties and structure of HBS. Scanning electron microscopy (SEM) findings showed that with the increasing of ball milling time, the surface morphology of OSA modified HBS became rougher and rougher and the particle morphology and crystal structure were damaged. When the pretreatment time of ball milling was 40 min, the degree of substitution of OSA modified HBS was 1.32 times higher than that of the conventional modification method. In addition, the longer the ball milling assistant, the longer the short-range ordering of the OSA modified HBS significantly decreased, and the relative crystallinity decreased (from 16.68 % to 7.93 %), leading to a decrease in thermal stability too. However, it greatly enhanced the aging resistance and flowability. In terms of emulsification properties, the emulsification properties of OSA modified HBS increased from 60.67 % to 75.67 %. Therefore, the HBS with better freeze-thaw stability and higher degree of substitution can be prepared by ball milling pretreatment and OSA modification, which provides technical support for further development of starch resources.


Subject(s)
Hordeum , Starch , Starch/chemistry , Succinic Anhydrides/chemistry , Freezing
15.
Sci Bull (Beijing) ; 69(1): 72-81, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38036331

ABSTRACT

TRIM71 is an RNA-binding protein with ubiquitin ligase activity. Numerous functions of mammalian TRIM71, including cell cycle regulation, embryonic stem cell (ESC) self-renewal, and reprogramming of pluripotent stem cells, are related to its RNA-binding property. We previously reported that a long noncoding RNA (lncRNA) Trincr1 interacts with mouse TRIM71 (mTRIM71) to repress FGF/ERK pathway in mouse ESCs (mESCs). Herein, we identify an RNA motif specifically recognized by mTRIM71 from Trincr1 RNA, and solve the crystal structure of the NHL domain of mTRIM71 complexed with the RNA motif. Similar to the zebrafish TRIM71, mTRIM71 binds to a stem-loop structured RNA fragment of Trincr1, and an adenosine base at the loop region is crucial for the mTRIM71 interaction. We map similar hairpin RNAs preferably bound by TRIM71 in the mRNA UTRs of the cell-cycle related genes regulated by TRIM71. Furthermore, we identify key residues of mTRIM71, conserved among mammalian TRIM71 proteins, required for the RNA-binding property. Single-site mutations of these residues significantly impair the binding of TRIM71 to hairpin RNAs in vitro and to mRNAs of Cdkn1a/p21 and Rbl2/p130 in mESCs. Furthermore, congenital hydrocephalus (CH) specific mutation of mTRIM71 impair its binding to the RNA targets as well. These results reveal molecular mechanism behind the recognition of RNA by mammalian TRIM71 and provide insights into TRIM71 related diseases.


Subject(s)
Ubiquitin-Protein Ligases , Zebrafish , Animals , Mice , Zebrafish/genetics , Ubiquitin-Protein Ligases/genetics , Tripartite Motif Proteins/genetics , RNA-Binding Proteins/genetics , RNA , Mammals/genetics
16.
Int J Biol Macromol ; 258(Pt 1): 128938, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38143061

ABSTRACT

In this study, type III resistant starch (RS3) was prepared from high amylose maize starch (HAMS) using hydrothermal (RS-H), hydrothermal combined ultrasonication (RS-HU), hydrothermal-alkali (RS-HA), and hydrothermal-alkali combined ultrasonication (RS-HAU). The role of the preparation methods and the mechanism of RS3 formation were analyzed by studying the multiscale structure and digestibility of the starch. The SEM, NMR, and GPC results showed that hydrothermal-alkali combined with ultrasonication could destroy the granule structure and α-1,6 glycosidic bond of HAMS and reduce the molecular weight of HAMS from 195.306 kDa to 157.115 kDa. The other methods had a weaker degree of effect on the structure of HAMS, especially hydrothermal and hydrothermal combined ultrasonication. The multiscale structural results showed that the relative crystallinity, short-range orderliness, and thermal stability of RS-HAU were significantly higher compared with native HAMS. In terms of digestion, RS-HAU had the highest RS content of 69.40 %. In summary, HAMS can generate many short-chain amylose due to structural damage, which rearrange to form digestion-resistant crystals. With correlation analysis, we revealed the relationship between the multiscale structure and the RS content, which can be used to guide the preparation of RS3.


Subject(s)
Amylose , Resistant Starch , Amylose/chemistry , Zea mays/chemistry , Ultrasonics , Digestion , Starch/chemistry
17.
J Agric Food Chem ; 71(47): 18510-18523, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37971491

ABSTRACT

In this study, galangin (Gal), kaempferol (Kae), quercetin (Que), and myricetin (Myr) were chosen as the representative flavonoids with different phenolic hydroxyl numbers in the B-ring. The edible dock protein (EDP) was chosen as the new plant protein. Based on this, the regulation mechanism of the phenolic hydroxyl number on the self-assembly behavior and molecular interaction between EDP and flavonoid components were investigated. Results indicated that the loading capacity order of flavonoids within the EDP nanomicelles was Myr (10.92%) > Que (9.56%) > Kae (6.63%) > Gal (5.55%). Moreover, this order was consistent with the order of the hydroxyl number in the flavonoid's B ring: Myr (3) > Que (2) > Kae (1) > Gal (0). The micro morphology exhibited that four flavonoid-EDP nanomicelles had a core-shell structure. In the meantime, the EDP encapsulation remarkably improved the flavonoids' water solubility, storage stability, and sustained release characteristics. During the interaction of EDP and flavonoids, the noncovalent interactions including van der Waals forces, hydrophobic interaction, and hydrogen bonding were the main binding forces. All of the results demonstrated that the hydroxyl number of bioactive compounds is a critical factor for developing a delivery system with high loading ability and stability.


Subject(s)
Flavonoids , Quercetin , Flavonoids/chemistry , Quercetin/chemistry , Antioxidants/chemistry , Phenols , Hydroxyl Radical/chemistry , Hydrophobic and Hydrophilic Interactions
18.
BMC Pulm Med ; 23(1): 422, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37919667

ABSTRACT

BACKGROUND: Angiotensin (Ang)-(1-7) can reduce airway inflammation and airway remodeling in allergic asthma. Autophagy-related 5 (ATG5) has attracted wide attentions in asthma. However, the effects of Ang-(1-7) on ATG5-mediated autophagy in allergic asthma are unclear. METHODS: In this study, human bronchial epithelial cell (BEAS-2B) and human bronchial smooth muscle cell (HBSMC) were treated with different dose of Ang-(1-7) to observe changes of cell viability. Changes of ATG5 protein expression were measured in 10 ng/mL of interleukin (IL)-13-treated cells. Transfection of ATG5 small interference RNA (siRNA) or ATG5 cDNA in cells was used to analyze the effects of ATG5 on secretion of cytokines in the IL-13-treated cells. The effects of Ang-(1-7) were compared to the effects of ATG5 siRNA transfection or ATG5 cDNA transfection in the IL-13-treated cells. In wild-type (WT) mice and ATG5 knockout (ATG5-/-) mice, ovalbumin (OVA)-induced airway inflammation, fibrosis and autophagy were observed. In the OVA-induced WT mice, Ang-(1-7) treatment was performed to observe its effects on airway inflammation, fibrosis and autophagy. RESULTS: The results showed that ATG5 protein level was decreased with Ang-(1-7) dose administration in the IL-13-treated BEAS-2B and IL13-treated HBSMC. Ang-(1-7) played similar results to ATG5 siRNA that it suppressed the secretion of IL-25 and IL-13 in the IL-13-treated BEAS-2B cells, and inhibited the expression of transforming growth factor (TGF)-ß1 and α-smooth muscle actin (α-SMA) protein in the IL-13-treated HBSMC cells. ATG5 cDNA treatment significantly increased the secretion of IL-25 and IL-13 and expression of TGF-ß1 and α-SMA protein in IL-13-treated cells. Ang-(1-7) treatment suppressed the effects of ATG5 cDNA in the IL-13-treated cells. In OVA-induced WT mice, Ang-(1-7) treatment suppressed airway inflammation, remodeling and autophagy. ATG5 knockout also suppressed the airway inflammation, remodeling and autophagy. CONCLUSIONS: Ang-(1-7) treatment suppressed airway inflammation and remodeling in allergic asthma through inhibiting ATG5, providing an underlying mechanism of Ang-(1-7) for allergic asthma treatment.


Subject(s)
Asthma , Lung , Humans , Animals , Mice , Lung/pathology , Ovalbumin/adverse effects , Interleukin-13 , Airway Remodeling , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/pharmacology , Autophagy-Related Protein 5/therapeutic use , DNA, Complementary/adverse effects , Asthma/genetics , Transforming Growth Factor beta1/metabolism , Inflammation/drug therapy , RNA, Small Interfering/adverse effects , Fibrosis , Disease Models, Animal , Mice, Inbred BALB C
20.
Int J Biol Macromol ; 253(Pt 3): 126873, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37716663

ABSTRACT

Radix Cynanchi bungei (RCb) contains 40-70 % starch, yet little is known about the structure and properties of RCb starch. In this study, the multiscale structure of two cultivars of RCb starch (YW201501 and BW201001) were characterized, and the effects of starch structure on its physicochemical properties were investigated. The differences in physicochemical properties of RCb starch were influenced by its multiscale structure. The starch granules were round and irregular polygon, with sizes ranging between 2 and 14 µm. YW201501 had a higher amylose (21.81 %) and lipid (0.96 %) content, molecular weight (59.5 × 106 g/mol), and A chain proportion (27.5 %), and a lower average granule size (6.14 µm), amylopectin average chain length (19.7), and B3 chain proportion (10.3 %). Both starches were B-type crystalline, with higher crystallinity (26.3 %) and R1047/1022 (0.74) for YW201501, resulting in large gelatinization enthalpy. In addition, the higher peak viscosity and larger retrogradation degree of YW201501 were correlated to its higher amylose content. In vitro digestibility revealed that the low rapidly digestible starch and high resistant starch of BW201001 were related to the fine structure of starch. YW201501 and BW201001 had a medium glycemic index (62.6-66.0) with potential for processing into healthy starchy foods.


Subject(s)
Amylose , Starch , Starch/chemistry , Amylose/chemistry , Amylopectin/chemistry , Viscosity , Molecular Weight
SELECTION OF CITATIONS
SEARCH DETAIL