Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Diabetes Obes Metab ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951947

ABSTRACT

AIM: To show that electroacupuncture stimulation (ES) remodels sympathetic innervation in brown adipose tissue (BAT) via the bone morphogenic protein 8B (BMP8B)-neuregulin 4 (NRG4)-ErbB4 axis, with somatotopic dependence. MATERIALS AND METHODS: We established a high-fat diet (HFD) model with C57BL/6J mice to measure the thermogenesis and metabolism of BAT. In addition, the sympathetic nerve activity (SNA) was measured with the electrophysiological technique, and the immunostaining of c-Fos was used to detect the central nervous system sources of sympathetic outflows. Finally, the key role of the BMP8B-NRG4-ErbB4 axis was verified by peripheral specific antagonism of ErbB4. RESULTS: ES at the forelimb and abdomen regions significantly up-regulate SNA, whereas ES at the hindlimb region has a limited regulatory effect on SNA but still partially restores HFD-induced BAT dysfunction. Mechanistically, ES at the forelimb and abdomen regions driving catecholaminergic signals in brown adipocytes depends on neural activities projected from the ventromedial nucleus of the hypothalamus (VMH) to the spinal cord intermediolateral column (IML). Notably, the peripheral suppression of ErbB4 in BAT inhibits the thermogenesis and metabolic function of BAT, as well as significantly hindering the SNA activation and metabolic benefits induced by ES. CONCLUSION: These results suggest that ES appears to be an effective approach for remodeling sympathetic innervation in BAT, which is closely related to neuronal activity in the VMH and the NRG4-ErbB4 signaling pathway.

2.
J Hazard Mater ; 476: 134963, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38908186

ABSTRACT

Integrating cascaded photocatalytic H2O2 generation and subsequent activation of H2O2 (into ·OH radicals) with solar-driven interfacial evaporation techniques offers an effective and sustainable approach for in-situ treating water contaminated with organic substances. Unlike traditional water-dispersed catalysts, the interfacial evaporation approach presents unique challenges in photocatalytic reactions. We explored these dynamics using an AgI/PPy/MF interfacial photothermal set, achieving H2O2 production efficiency (approximately 1.53 mM/g/h) - three times higher than submerged counterparts. This efficiency is attributed to exceptional solar light absorption (about 95 %), a significant surface photothermal effect (raising temperatures by approximately 36 °C), and enhanced oxygen availability (38 times more than in water), all characteristic of the interfacial system. The in-situ activation of H2O2 into ·OH notably improves the degradation of organic pollutants, achieving up to 99 % removal efficiency. This comprehensive analysis highlights the potential of combining photocatalytic H2O2 processes with interfacial evaporation for efficiently purifying organically polluted water.

3.
J Affect Disord ; 357: 156-162, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38703900

ABSTRACT

BACKGROUND: The causal relationship between thyroid function variations within the reference range and cognitive function remains unknown. We aimed to explore this causal relationship using a Mendelian randomization (MR) approach. METHODS: Summary statistics of a thyroid function genome-wide association study (GWAS) were obtained from the ThyroidOmics consortium, including reference range thyroid stimulating hormone (TSH) (N = 54,288) and reference range free thyroxine (FT4) (N = 49,269). GWAS summary statistics on cognitive function were obtained from the Social Science Genetic Association Consortium (SSGAC) and the UK Biobank, including cognitive performance (N = 257,841), prospective memory (N = 152,605), reaction time (N = 459,523), and fluid intelligence (N = 149,051). The primary method used was inverse-variance weighted (IVW), supplemented with weighted median, Mr-Egger regression, and MR-Pleiotropy Residual Sum and Outlier. Several sensitivity analyses were conducted to identify heterogeneity and pleiotropy. RESULTS: An increase in genetically associated TSH within the reference range was suggestively associated with a decline in cognitive performance (ß = -0.019; 95%CI: -0.034 to -0.003; P = 0.017) and significantly associated with longer reaction time (ß = 0.016; 95 % CI: 0.005 to 0.027; P = 0.004). Genetically associated FT4 levels within the reference range had a significant negative relationship with reaction time (ß = -0.030; 95%CI:-0.044 to -0.015; P = 4.85 × 10-5). These findings remained robust in the sensitivity analyses. CONCLUSIONS: Low thyroid function within the reference range may have a negative effect on cognitive function, but further research is needed to fully understand the nature of this relationship. LIMITATIONS: This study only used GWAS data from individuals of European descent, so the findings may not apply to other ethnic groups.


Subject(s)
Cognition , Genome-Wide Association Study , Mendelian Randomization Analysis , Thyrotropin , Thyroxine , Humans , Thyrotropin/blood , Cognition/physiology , Thyroxine/blood , Thyroid Gland/physiology , Reference Values , Thyroid Function Tests , Intelligence/genetics , Intelligence/physiology , Female , Male , Reaction Time/genetics , Memory, Episodic , Polymorphism, Single Nucleotide
4.
Phytomedicine ; 130: 155761, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38797031

ABSTRACT

BACKGROUND: Quercetin has received extensive attention for its therapeutic potential treating respiratory syncytial virus (RSV) infection diseases. Recent studies have highlighted quercetin's ability of suppressing alveolar macrophages (AMs)-derived lung inflammation. However, the anti-inflammatory mechanism of quercetin against RSV infection still remains elusive. PURPOSE: This study aims to elucidate the mechanism about quercetin anti-inflammatory effect on RSV infection. METHODS: BALB/c mice were intranasally infected with RSV and received quercetin (30, 60, 120 mg/kg/d) orally for 3 days. Additionally, an in vitro infection model utilizing mouse alveolar macrophages (MH-S cells) was employed to validate the proposed mechanism. RESULTS: Quercetin exhibited a downregulatory effect on glycolysis and tricarboxylic acid (TCA) cycle metabolism in RSV-infected AMs. However, it increased itaconic acid production, a metabolite derived from citrate through activating immune responsive gene 1 (IRG1), and further inhibiting succinate dehydrogenase (SDH) activity. While the suppression of SDH activity orchestrated a cascading downregulation of Hif-1α/NLRP3 signaling, ultimately causing AMs polarization from M1 to M2 phenotypes. CONCLUSION: Our study demonstrated quercetin stimulated IRG1-mediated itaconic acid anabolism and further inhibited SDH/Hif-1α/NLRP3 signaling pathway, which led to M1 to M2 polarization of AMs so as to ameliorate RSV-induced lung inflammation.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Macrophages, Alveolar , Mice, Inbred BALB C , NLR Family, Pyrin Domain-Containing 3 Protein , Quercetin , Respiratory Syncytial Virus Infections , Succinates , Animals , Succinates/pharmacology , Macrophages, Alveolar/drug effects , Respiratory Syncytial Virus Infections/drug therapy , Quercetin/pharmacology , Mice , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Succinate Dehydrogenase/metabolism , Glycolysis/drug effects , Female , Signal Transduction/drug effects , Citric Acid Cycle/drug effects , Respiratory Syncytial Viruses/drug effects , Anti-Inflammatory Agents/pharmacology , Hydro-Lyases
5.
Inorg Chem ; 63(17): 7799-7805, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38627892

ABSTRACT

Organic-inorganic hybrid iodide systems, which can form highly ordered chromophores and uniformly oriented transition dipole moments, serve as optimal host-guest systems for the fabrication of micrometer-scale optical devices. In particular, those with low-dimensional structures can exhibit strong quantum-limited and highly localized charges, enabling the generation of high exciton energies and stable excitation emission. In this study, we report a novel instance of an organic-inorganic hybrid iodate, (C13H11N2)(IO3), which was synthesized by incorporating the optically active organic compound, 9-aminoacridine. Upon crystallization in the monoclinic space group P21/c, this compound exhibits a direct optical band gap of 2.66 eV. The incorporation of discrete organic units within the low-dimensional structures induces pronounced local charges, culminating in broadband green luminescence with a peak at 540 nm under UV excitation. This corresponds to the CIE coordinates (0.37, 0.56). A potential phase transition was inferred through a comprehensive analysis of the variable temperature structure and emission spectra. Furthermore, first-principles calculations revealed the pivotal role of organic cations in facilitating broadband luminescence.

6.
Sci Data ; 11(1): 160, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38307872

ABSTRACT

The eel gobies fascinate researchers with many important features, including its unique body structure, benthic lifestyle, and degenerated eyes. However, genome assembly and exploration of the unique genomic composition of the eel gobies are still in their infancy. This has severely limited research progress on gobies. In this study, multi-platform sequencing data were generated and used to assemble and annotate the genome of O. rebecca at the chromosome-level. The assembled genome size of O. rebecca is 918.57 Mbp, which is similar to the estimated genome size (903.03 Mbp) using 17-mer. The scaffold N50 is 41.67 Mbp, and 23 chromosomes were assembled using Hi-C technology with a mounting rate of 99.96%. Genome annotation indicates that 53.29% of the genome is repetitive sequences, and 22,999 protein-coding genes are predicted, of which 21,855 have functional annotations. The chromosome-level genome of O. rebecca will not only provide important genomic resources for comparative genomic studies of gobies, but also expand our knowledge of the genetic origin of their unique features fascinating researchers for decades.


Subject(s)
Eels , Genome , Perciformes , Animals , Chromosomes/genetics , Eels/genetics , Genomics , Molecular Sequence Annotation , Perciformes/genetics , Phylogeny
7.
Nat Commun ; 15(1): 1186, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38332033

ABSTRACT

In-situ wastewater treatment has gained popularity due to cost and energy savings tailored to water sources and user needs. However, this treatment, particularly through advanced oxidation processes (AOPs), poses ecological risks due to the need for strong oxidizing agents. Here, we present a decoupled oxidation process (DOP) using single-atom copper-modified graphite felt electrodes. This process creates a positive potential difference (ΔE ~ 0.5 V) between spatially isolated oxidants and organics and drives electron transfer-based redox reactions. The approach avoids the drawbacks of conventional AOPs, while being capable of treating various recalcitrant electron-rich organics. A floating water treatment device designed based on the DOP approach can degrade organic molecules in large bodies of water with oxidants stored separately in the device. We demonstrate that over 200 L of contaminated water can be treated with a floating device containing only 40 mL of oxidant (10 mM peroxysulphate). The modular device can be used in tandem structures on demand, maximizing water remediation per unit area. Our result provides a promising, eco-friendly method for in-situ water treatment that is unattainable with existing techniques.

8.
Diabetes Obes Metab ; 26(4): 1430-1442, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38229447

ABSTRACT

Brown and white adipose tissue mediate thermogenesis through the thermogenetic centre of the brain, but safe methods for activating thermogensis and knowledge of the associated molecular mechanisms are lacking. We investigated body surface electroacupuncture stimulation (ES) at ST25 (targeted at the abdomen) induction of brown adipose thermogenesis and the neural mechanism of this process. Inguinal white adipose tissue (iWAT) and interscapular brown adipose tissue (iBAT) were collected and the thermogenic protein expression levels were measured to evaluate iBAT thermogenesis capacity. The thermogenic centre activating region and sympathetic outflow were evaluated based on neural electrical activity and c-fos expression levels. iWAT sensory axon plasticity was analysed with whole-mount adipose tissue imaging. ES activated the sympathetic nerves in iBAT and the c-fos-positive cells induced sympathetic outflow activation to the iBAT from the medial preoptic area (MPA), the dorsomedial hypothalamus (DM) and the raphe pallidus nucleus (RPA). iWAT denervation mice exhibited decreased c-fos-positive cells in the DM and RPA, and lower recombinant uncoupling orotein 1 peroxisome proliferator-activated receptor, ß3-adrenergic receptor, and tyrosine hydroxylase expression. Remodelling the iWAT sensory axons recovered the signal from the MPA to the RPA and induced iBAT thermogenesis. The sympathetic denervation attenuated sensory nerve density. ES induced sympathetic outflow from the thermogenetic centres to iBAT, which mediated thermogenesis. iWAT sensory axon remodelling induced the MPA-DM-RPA-iBAT thermogenesis pathway.


Subject(s)
Electroacupuncture , Mice , Animals , Sympathetic Nervous System/physiology , Obesity/therapy , Obesity/metabolism , Adipose Tissue, White , Adipose Tissue, Brown/metabolism , Thermogenesis , Sense Organs
9.
BMC Public Health ; 24(1): 26, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167020

ABSTRACT

BACKGROUND: Chinese topography appears a three-rung ladder-like distribution of decreasing elevation from northwest to southeast, which is divided by two sloping edges. Previous studies have reported that prevalence of thyroid diseases differed by altitude, and geographical factors were associated with thyroid disorders. To explore the association between three-rung ladder-like regions and thyroid disorders according to unique Chinese topographic features, we conducted an epidemiological cross-sectional study from 2015-2017 that covered all 31 mainland Chinese provinces. METHODS: A total of 78,470 participants aged ≥ 18 years from a nationally representative cross-sectional study were included. Serum thyroid peroxidase antibody, thyroglobulin antibody, and thyroid-stimulating hormone levels; urine iodine concentration; and thyroid volume were measured. The three-rung ladder-like distribution of decreasing elevation from northwest to southeast in China was categorized into three topographic groups according to elevation: first ladder, > 3000 m above sea level; second ladder, descending from 3000-500 m; and third ladder, descending from 500 m to sea level. The third ladder was further divided into groups A (500-100 m) and B (< 100 m). Associations between geographic factors and thyroid disorders were assessed using linear and binary logistic regression analyses. RESULTS: Participants in the first ladder group were associated with lower thyroid peroxidase (ß = -4.69; P = 0.00), thyroglobulin antibody levels (ß = -11.08; P = 0.01), and the largest thyroid volume (ß = 1.74; P = 0.00), compared with the other groups. The second ladder group was associated with autoimmune thyroiditis (odds ratio = 1.30, 95% confidence interval [1.18-1.43]) and subclinical hypothyroidism (odds ratio = 0.61, 95%confidence interval [0.57-0.66]) (P < 0.05) compared with the first ladder group. Group A (third ladder) (500-100 m) was associated with thyroid nodules and subclinical hypothyroidism (P < 0.05). Furthermore, group B (< 100 m) was positively associated with autoimmune thyroiditis, thyroid peroxidase and thyroglobulin antibody positivity, and negatively associated with overt hypothyroidism, subclinical hypothyroidism, and goiter compared with the first ladder group(P < 0.05). CONCLUSION: We are the first to investigate the association between different ladder regions and thyroid disorders according to unique Chinese topographic features. The prevalence of thyroid disorders varied among the three-rung ladder-like topography groups in China, with the exception of overt hyperthyroidism.


Subject(s)
Goiter , Hypothyroidism , Iodine , Thyroid Diseases , Thyroiditis, Autoimmune , Humans , Thyroglobulin , Cross-Sectional Studies , Altitude , Thyroid Diseases/epidemiology , Hypothyroidism/epidemiology , Goiter/epidemiology , Thyroiditis, Autoimmune/epidemiology , Iodine/urine , Iodide Peroxidase , Thyrotropin
10.
Brain Res ; 1825: 148710, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38103878

ABSTRACT

Long-term high-fat diet (HFD) in adolescents leads to impaired hippocampal function and increases the risk of cognitive impairment. Studies have shown that HFD activates hippocampal microglia and induces hippocampal inflammation, which is an important factor for cognitive impairment. Electroacupuncture stimulation (ES), a nerve stimulation therapy, is anti-inflammatory. This study explored its therapeutic potential and mechanism of action in obesity-related cognitive impairment. 4-week-old C57 mice were given either normal or HFD for 22 weeks. At 19 weeks, some of the HFD mice were treated with ES and nigericin sodium salt. The cognitive behavior was assessed through Morris water maze test at 23 weeks. Western blotting was used to detect the expression levels of pro-inflammatory molecules IL-1ß and IL-1R, synaptic plasticity related proteins synaptophysin and Postsynaptic Density-95 (PSD-95), and apoptotic molecules (Caspase-3 and Bcl-2), in the hippocampus. The number, morphology, and status of microglia, along with the brain-derived neurotrophic factor(BDNF) content, were analyzed using immunofluorescence. ES treatment improved cognitive deficits in HFD model mice, and decreased the expressions of microglial activation marker, CD68, and microglial BDNF. Inhibition of proinflammatory cytokine, IL-1ß, and IL-1R promoted PSD-95 and synaptophysin expressions. Peripheral NLRP3 inflammasome agonist injections exacerbated the cognitive deficits in HFD mice and promoted the expressions of IL-1ß and IL-1R in the hippocampus. The microglia showed obvious morphological damage and apoptosis. Collectively, our findings suggest that ES inhibits inflammation, regulates microglial BDNF, and causes remodeling of hippocampal function in mice to counteract obesity-like induced cognitive impairment. Overexcitation of peripheral inflammasome complexes induces hippocampal microglia apoptosis, which hinders the effects of ES.


Subject(s)
Cognitive Dysfunction , Electroacupuncture , Mice , Animals , Synaptophysin/metabolism , Microglia/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Diet, High-Fat/adverse effects , Inflammasomes/metabolism , Cognitive Dysfunction/therapy , Cognitive Dysfunction/drug therapy , Obesity/metabolism , Hippocampus/metabolism , Inflammation/metabolism , Mice, Inbred C57BL
11.
Clin Transl Med ; 13(11): e1441, 2023 11.
Article in English | MEDLINE | ID: mdl-37997538

ABSTRACT

BACKGROUND: The study and synthesis of membrane organelles are becoming increasingly important, not only as simplified cellular models for corresponding molecular and metabolic studies but also for applications in synthetic biology of artificial cells and drug delivery vehicles. Lipid droplets (LDs) are central organelles in cellular lipid metabolism and are involved in almost all metabolic processes. Multiple studies have also demonstrated a high correlation between LDs and metabolic diseases. During these processes, LDs reveal a highly dynamic character, with their lipid fraction, protein composition and subcellular localisation constantly changing in response to metabolic demands. However, the molecular mechanisms underlying these functions have not been fully understood due to the limitations of cell biology approaches. Fortunately, developments in synthetic biology have provided a huge breakthrough for metabolism research, and methods for in vitro synthesis of LDs have been successfully established, with great advances in protein binding, lipid function, membrane dynamics and enzymatic reactions. AIMS AND METHODS: In this review, we provide a comprehensive overview of the assembly and function of endogenous LDs, from the generation of lipid molecules to how they are assembled into LDs in the endoplasmic reticulum. In particular, we highlight two major classes of synthetic LD models for fabrication techniques and their recent advances in biology and explore their roles and challenges in achieving real applications of artificial LDs in the future.


Subject(s)
Lipid Droplets , Metabolic Diseases , Humans , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Lipid Metabolism , Endoplasmic Reticulum/metabolism , Lipids/analysis , Metabolic Diseases/metabolism
12.
Sci Rep ; 13(1): 17659, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37848465

ABSTRACT

In this study, a novel artificial intelligence (AI) model is proposed to detect stenosis in arteriovenous fistulas (AVFs) using inexpensive and non-invasive audio recordings. The proposed model is a combination of two new input features based on short-time Fourier transform (STFT) and sample entropy, as well as two associated classification models (ResNet50 and ANN). The model's hyper-parameters were optimized through the use of the design of the experiment (DOE). The proposed AI model demonstrates high performance with all essential metrics, including sensitivity, specificity, accuracy, precision, and F1-score, exceeding 0.90 at detecting stenosis greater than 50%. These promising results suggest that our approach can lead to new insights and knowledge in this field. Moreover, the robust performance of our model, combined with the affordability of the audio recording device, makes it a valuable tool for detecting AVF stenosis in home-care settings.


Subject(s)
Arteriovenous Fistula , Arteriovenous Shunt, Surgical , Humans , Renal Dialysis/methods , Arteriovenous Shunt, Surgical/methods , Artificial Intelligence , Constriction, Pathologic , Arteriovenous Fistula/diagnosis
14.
Clin Interv Aging ; 18: 1263-1274, 2023.
Article in English | MEDLINE | ID: mdl-37554512

ABSTRACT

Purpose: The prevalence of mild cognitive impairment (MCI) in patients with type 2 diabetes (T2D) is rapidly increasing. Thyroid hormones are key regulators of cognitive function in adults. The purpose of this study was to investigate the relationship between thyroid hormone sensitivity and MCI in euthyroid T2D patients. Patients and Methods: A total of 400 euthyroid T2D patients were enrolled in this cross-sectional study, including 218 patients with normal cognition and 182 MCI patients. The Montreal Cognitive Assessment (MoCA) was used to evaluate cognitive function. The free triiodothyronine to free thyroxine (FT3/FT4) ratio was calculated as a measure of peripheral sensitivity to thyroid hormones; the thyroid-stimulating hormone index (TSHI), thyrotrophic thyroxine resistance index (TT4RI) and thyroid feedback quantile-based index (TFQI) were calculated as measures of central sensitivity to thyroid hormones. Linear regression analysis and logistic regression analysis were performed to explore the relationships between these indices of thyroid hormone sensitivity and the MoCA score and MCI, respectively. Results: Compared with the normal cognitive function group, patients in the MCI group had higher TSHI, TT4RI and TFQI but a lower FT3/FT4 ratio (P<0.05). The MoCA score was positively correlated with the FT3/FT4 ratio but negatively correlated with TSHI, TT4RI and TFQI (P< 0.05). Multivariate logistic regression analysis showed that a low FT3/FT4 ratio and high TSHI, TT4RI and TFQI were independently associated with MCI (P<0.05). After adjustment for confounding factors, the odds ratio (OR) for the association between MCI and the highest tertile of the FT3/FT4 was 0.455 (95% CI: 0.264-0.785), for the highest tertile of TSHI, the OR was 2.380 (95% CI: 1.376-4.119), for the highest tertile of TT4RI, the OR was 2.342 (95% CI:1.353-4.054), and for the highest tertile of TFQI, the OR was 2.536 (95% CI: 1.466-4.387) (P< 0.05). Conclusion: Impaired sensitivity to thyroid hormones is associated with MCI in euthyroid T2D patients.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus, Type 2 , Thyroid Hormones , Humans , Cross-Sectional Studies , Diabetes Mellitus, Type 2/complications , Thyroid Hormones/metabolism , Thyrotropin , Thyroxine
15.
Hormones (Athens) ; 22(3): 425-439, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37523135

ABSTRACT

BACKGROUND: A new uric acid (UA) index has recently been proposed, while serum uric acid (SUA), fasting triglyceride, and fasting blood glucose levels in the index are shown to affect cognitive function. This study aims to investigate the clinical value of the UA index for assessing mild cognitive impairment (MCI) in type 2 diabetes (T2D) patients. METHODS: This was an observational cross-sectional study with 616 participants. A generalized additive model was used to determine a linear or curvilinear relationship between cognitive performance and the UA index. Logistic regression and random forest models were both developed. A receiver operating characteristic curve (ROC) was delineated and the area under the curve (AUC) was calculated. RESULTS: MCI was diagnosed in 313 participants (50.81%). Compared with the T2D-normal cognitive function group, MCI subjects had higher UA indexes, lower cognitive scores, and lower education levels (p < 0.001). Generalized additive models showed the UA index and the Montreal Cognitive Assessment (MoCA) score to be decreased linearly (p < 0.001). The UA index AUC was 0.751 (95% CI = 0.713-0.789, p < 0.001). The optimal cut-off point for the identification of MCI based on the UA index was 11.26 (sensitivity: 62.3%, specificity: 75.9%). Results for females in the cohort yielded an AUC change of + 2.5%, the less-educated population (AUC change of + 4.7%), and the hypertensive population (AUC change of + 1.1%). The AUCs were 0.791 (95% CI = 0.720-0.863) for the random forest model and 0.804 (95% CI = 0.770-0.837) for the logistic regression model, and no statistical significance was found (p = 0.758). CONCLUSION: This study showed that the increased UA index was independently associated with MCI in patients with T2D, especially among female, less-educated, and hypertensive patients. It could be a potential indicator of MCI in T2D patients.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus, Type 2 , Female , Humans , Cognition , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/etiology , Cross-Sectional Studies , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Uric Acid , Male
16.
ACS Nano ; 17(13): 12316-12324, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37345640

ABSTRACT

Fabricating one-dimensional (1D) single-crystalline nanostructures with the necessary characteristics for interconnects and functional units in nanodevices poses a major challenge. Traditional solution-based synthesis methods, driven by oriented attachment mechanisms, have limited the growth of either ultrathin crystalline nanowires or short rod-like nanocrystals due to stringent orientation requirements. The construction of single-crystalline ultralong nanowires with both an elongated length and moderate thickness has remained elusive. Here we introduce a growth mechanism based on progressively oriented attachment that enables the attachment of larger crystals while preserving the alignment of the crystal lattice. Using this mechanism, we achieve 1D single-crystalline lanthanide-doped nanowires (K2YF5:Yb/Er) with lengths up to 9 µm and a moderate thickness of approximately 20 nm. These nanowires can be integrated into a flexible film that exhibits stretching-dependent upconverted luminescence behavior. The mechanical toughness and elongated morphology of the nanowires facilitate the development of a wearable device dedicated to multidirectional strain sensing with high responsivity and excellent stability, withstanding repeated stretching and releasing for up to 1000 cycles.

17.
Front Pharmacol ; 14: 1117238, 2023.
Article in English | MEDLINE | ID: mdl-37274103

ABSTRACT

Background: In recent years, the incidence and mortality rates of chronic obstructive pulmonary disease (COPD) have increased significantly. Erchen Decoction combined with Xiebai Powder (ECXB) formula is mainly used to treat lung diseases in traditional Chinese medicine (TCM). However, the active ingredients of ECXB formula, COPD treatment-related molecular targets, and the mechanisms are still unclear. To reveal its underlying action of mechanism, network pharmacology, molecular docking, and molecular dynamic (MD) simulation approaches were used to predict the active ingredients and potential targets of ECXB formula in treating COPD. As a result, Herb-Symptom analysis showed that the symptoms treated by both TCM and modern medicine of ECXB formula were similar to the symptoms of COPD. Network pharmacology identified 170 active ingredients with 137 targets, and 7,002 COPD targets was obtained. 120 targets were obtained by intersection mapping, among which the core targets include MAPK8, ESR1, TP53, MAPK3, JUN, RELA, MAPK1, and AKT1. Functional enrichment analysis suggested that ECXB formula might exert its treat COPD pharmacological effects in multiple biological processes, such as cell proliferation, apoptosis, inflammatory response, and synaptic connections, and ECXB formula treated COPD of the KEGG potential pathways might be associated with the TNF signaling pathway, cAMP signaling pathway, and VEGF signaling pathway. Molecular docking showed that ECXB formula treatment COPD core active ingredients can bind well to core targets. MD simulations showed that the RELA-beta-sitosterol complex and ESR1-stigmasterol complex exhibited higher conformational stability and lower interaction energy, further confirming the role of ECXB formula in the treatment of COPD through these core components and core targets. Our study analyzed the medication rule of ECXB formula in the treatment of COPD from a new perspective and found that the symptoms treated by both TCM and modern medicine of ECXB formula were similar to the symptoms of COPD. ECXB formula could treat COPD through multi-component, multi-target, and multi-pathway synergistic effects, providing a scientific basis for further study on the mechanism of ECXB formula treatment of COPD. It also provides new ideas for drug development.

18.
Aging Clin Exp Res ; 35(6): 1339-1345, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37129710

ABSTRACT

AIM: Evidence indicates that type 2 diabetes (T2D) is associated with mild cognitive impairment (MCI). Inflammation is a recognized sign of many neurodegenerative diseases. The neutrophil-to-lymphocyte ratio (NLR) is a novel and inexpensive marker of inflammation. The purpose of this study was to investigate the relationship between the NLR and MCI in patients with T2D. METHODS: The sample for this study comprised 787 patients with T2D, including 411 patients with normal cognitive function and 376 patients with MCI. Blood biochemical parameters and routine blood indicators were determined by an automatic analyzer. The NLR was calculated as the neutrophil count divided by the lymphocyte count. RESULTS: Compared with the control group, the MCI group was older and had a higher NLR but a lower education level and Montreal Cognitive Assessment (MoCA) score (p < 0.05). Spearman correlation and multiple linear regression analyses confirmed that the MoCA score was negatively associated with the NLR (p < 0.001). Multivariate logistic regression analysis demonstrated that the NLR was an independent risk factor for MCI in patients with T2D (p < 0.001). After adjusting for confounding factors, the risk of MCI for those in the third tertile of the NLR was 2.907 times higher than that of those in the first tertile of the NLR (OR = 2.907, 95%CI = 1.978-4.272, p < 0.001). CONCLUSION: An elevated NLR is associated with MCI in patients with T2D.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus, Type 2 , Humans , Neutrophils , Diabetes Mellitus, Type 2/complications , Lymphocytes , Cognitive Dysfunction/diagnosis , Inflammation/complications
19.
Cell Cycle ; 22(12): 1421-1433, 2023 06.
Article in English | MEDLINE | ID: mdl-37218663

ABSTRACT

During eukaryotic cell division, organelles are distributed between daughter cells through a dynamic process to ensure that cells can differentiate and perform their functions correctly. Uncovering the mode of lipid droplet (LD) distribution may help reveal the mechanism of membrane remodeling during cell division and lipid droplet function. Our results showed that LDs were equally distributed in both daughter cells during cytokinesis. Further experiments demonstrated that the key factor regulating the movement of LDs is the microtubule (MT)-resident protein KIF5B. Because the KIF5B structure lacks a hydrophilic region, we believe that there are proteins that mediate the interaction between LDs and KIF5B. Mass spectrometric detection of KIF5B-interacting proteins on the surface of LDs demonstrated that LDs were first wrapped by intermediate filaments forming a meshwork and then contacted with MTs to mediate lipid droplet movement during cytokinesis. Disruption of the homogeneous distribution of LDs may hinder cell proliferation and even lead to apoptosis.


Subject(s)
Lipid Metabolism , Microtubules , Mitosis , Microtubules/metabolism , Humans , HeLa Cells , Animals , Mice , Kinesins/metabolism
20.
ACS Nano ; 17(5): 4306-4314, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36867719

ABSTRACT

The optical and chemical properties of plasmonic materials have sparked extensive research in exploring their applications in various areas such as photocatalysts, chemical sensors, and photonic devices. However, complicated plasmon-molecule interactions have posed substantial obstacles for the development of plasmonic material-based technologies. Quantifying plasmon-molecule energy transfer processes is a crucial step to understand the complex interplay between plasmonic materials and molecules. Here we report an anomalous steady-state reduction in the anti-Stokes to Stokes surface-enhanced Raman spectroscopy (SERS) scattering intensity ratio of aromatic thiols adsorbed on plasmonic gold nanoparticles under continuous-wave laser irradiation. The observed reduction of the scattering intensity ratio is closely related to the excitation wavelength, the surrounding media, and component of the plasmonic substrates used. Moreover, we observed a similar extent of scattering intensity ratio reduction with a range of aromatic thiols and under different external temperatures. Our discovery implies that there are either unexplained wavelength-dependent SERS outcoupling effects, or some unrecognized plasmon-molecule interactions which lead to a nanoscale plasmon refrigerator for molecules. This effect should be taken into consideration for the design of plasmonic catalysts and plasmonic photonic devices. Moreover, it could be useful for cooling large molecules under ambient conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...