Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 285: 120490, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38103624

ABSTRACT

Identifying the location, the spatial extent and the electrical activity of distributed brain sources in the context of epilepsy through ElectroEncephaloGraphy (EEG) recordings is a challenging task because of the highly ill-posed nature of the underlying Electrophysiological Source Imaging (ESI) problem. To guarantee a unique solution, most existing ESI methods pay more attention to solve this inverse problem by imposing physiological constraints. This paper proposes an efficient ESI approach based on simulation-driven deep learning. Epileptic High-resolution 256-channels scalp EEG (Hr-EEG) signals are simulated in a realistic manner to train the proposed patient-specific model. More particularly, a computational neural mass model developed in our team is used to generate the temporal dynamics of the activity of each dipole while the forward problem is solved using a patient-specific three-shell realistic head model and the boundary element method. A Temporal Convolutional Network (TCN) is considered in the proposed model to capture local spatial patterns. To enable the model to observe the EEG signals from different scale levels, the multi-scale strategy is leveraged to capture the overall features and fine-grain features by adjusting the convolutional kernel size. Then, the Long Short-Term Memory (LSTM) is used to extract temporal dependencies among the computed spatial features. The performance of the proposed method is evaluated through three different scenarios of realistic synthetic interictal Hr-EEG data as well as on real interictal Hr-EEG data acquired in three patients with drug-resistant partial epilepsy, during their presurgical evaluation. A performance comparison study is also conducted with two other deep learning-based methods and four classical ESI techniques. The proposed model achieved a Dipole Localization Error (DLE) of 1.39 and Normalized Hamming Distance (NHD) of 0.28 in the case of one patch with SNR of 10 dB. In the case of two uncorrelated patches with an SNR of 10 dB, obtained DLE and NHD were respectively 1.50 and 0.28. Even in the more challenging scenario of two correlated patches with an SNR of 10 dB, the proposed approach still achieved a DLE of 3.74 and an NHD of 0.43. The results obtained on simulated data demonstrate that the proposed method outperforms the existing methods for different signal-to-noise and source configurations. The good behavior of the proposed method is also confirmed on real interictal EEG data. The robustness with respect to noise makes it a promising and alternative tool to localize epileptic brain areas and to reconstruct their electrical activities from EEG signals.


Subject(s)
Deep Learning , Drug Resistant Epilepsy , Epilepsy , Humans , Brain/diagnostic imaging , Epilepsy/diagnostic imaging , Electroencephalography/methods , Drug Resistant Epilepsy/diagnostic imaging , Brain Mapping/methods
2.
Int J Neural Syst ; 32(7): 2250032, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35695914

ABSTRACT

Epilepsy is one of the most common neurological diseases, which can seriously affect the patient's psychological well-being and quality of life. An accurate and reliable seizure prediction system can generate alarm before epileptic seizures to provide patients and their caregivers with sufficient time to take appropriate action. This study proposes an efficient seizure prediction system based on deep learning in order to anticipate the onset of the seizure as early as possible. Handcrafted features extracted based on the prior knowledge and hidden deep features are complementarily fused through the feature fusion module, and then the hybrid features are fed into the multiplicative long short-term memory (MLSTM) to explore the temporal dependency in EEG signals. A one-dimensional channel attention mechanism is implemented to emphasize the more representative information in the multi-channel output of the MLSTM. Finally, a transfer learning strategy is proposed to transfer the weights of the base model trained on the EEG data of all patients to the target patient model, and the latter is then continuously trained using the EEG data of the target patient. The proposed method achieves an average sensitivity of 95.56% and a false positive rate (FPR) of 0.27/h on the SWEC-ETHZ intracranial EEG data. For the more challenging CHB-MIT scalp EEG database, an average sensitivity of 89.47% and a FPR of 0.34/h are obtained. Experimental results demonstrate that the proposed method has good robustness and generalization ability in both intracranial and scalp EEG signals.


Subject(s)
Epilepsy , Quality of Life , Algorithms , Electroencephalography/methods , Epilepsy/diagnosis , Humans , Machine Learning , Neural Networks, Computer , Seizures/diagnosis
3.
Int J Neural Syst ; 30(4): 2050019, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32172613

ABSTRACT

The automatic seizure detection system can effectively help doctors to monitor and diagnose epilepsy thus reducing their workload. Many outstanding studies have given good results in the two-class seizure detection problems, but most of them are based on hand-wrought feature extraction. This study proposes an end-to-end automatic seizure detection system based on deep learning, which does not require heavy preprocessing on the EEG data or feature engineering. The fully convolutional network with three convolution blocks is first used to learn the expressive seizure characteristics from EEG data. Then these robust EEG features pertinent to seizures are presented as an input to the Nested Long Short-Term Memory (NLSTM) model to explore the inherent temporal dependencies in EEG signals. Lastly, the high-level features obtained from the NLSTM model are fed into the softmax layer to output predicted labels. The proposed method yields an accuracy range of 98.44-100% in 10 different experiments based on the Bonn University database. A larger EEG database is then used to evaluate the performance of the proposed method in real-life situations. The average sensitivity of 97.47%, specificity of 96.17%, and false detection rate of 0.487 per hour are yielded. For CHB-MIT Scalp EEG database, the proposed model also achieves a segment-level sensitivity of 94.07% with a false detection rate of 0.66 per hour. The excellent results obtained on three different EEG databases demonstrate that the proposed method has good robustness and generalization power under ideal and real-life conditions.


Subject(s)
Cerebral Cortex/physiopathology , Deep Learning , Electroencephalography/methods , Models, Theoretical , Seizures/diagnosis , Signal Processing, Computer-Assisted , Electroencephalography/standards , Humans , Sensitivity and Specificity
4.
Med Biol Eng Comput ; 57(1): 205-219, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30076538

ABSTRACT

Visual inspection of electroencephalogram (EEG) recordings for epilepsy diagnosis is very time-consuming. Therefore, much research is devoted to developing a computer-assisted diagnostic system to relieve the workload of neurologists. In this study, a kernel version of the robust probabilistic collaborative representation-based classifier (R-ProCRC) is proposed for the detection of epileptic EEG signals. The kernel R-ProCRC jointly maximizes the likelihood that a test EEG sample belongs to each of the two classes (seizure and non-seizure), and uses the kernel function method to map the EEG samples into the higher dimensional space to relieve the problem that they are linearly non-separable in the original space. The wavelet transform with five scales is first employed to process the raw EEG signals. Next, the test EEG samples are collaboratively represented on the training sets by the kernel R-ProCRC and they are categorized by checking which class has the maximum likelihood. Finally, post-processing is deployed to reduce misjudgment and acquire more stable results. This method is evaluated on two EEG databases and yields an accuracy of 99.3% for interictal and ictal EEGs on the Bonn database. In addition, the average sensitivity of 97.48% and specificity of 96.81% are achieved from the Freiburg database. Graphical abstract Visual inspection of EEG recordings for epilepsy diagnosis is very time-consuming. Therefore, many researchers are devoted to developing a computer-assisted diagnostic system to relieve the workload of neurologists. In this paper, a kernel version of the robust probabilistic collaborative representation based classifier (R-ProCRC) is proposed for the detection of epileptic EEG signals. The kernel R-ProCRC jointly maximizes the likelihood that a test EEG sample belongs to each of the two classes, i.e., seizure and non-seizure, and uses the kernel function method to map the EEG samples into the higher dimensional space to relieve the problem that they are linearly non-separable in the original space. The main procedures of the proposed method are exhibited in the two figures as following, Fig. 1 The main procedures of the proposed method. (a) The schematic diagram of EEG classification based on the Freiburg database. (b) The detailed procedures of the kernel R-ProCRC This method has been evaluated on two different types of EEG databases and shows superior performance.


Subject(s)
Algorithms , Probability , Seizures/diagnosis , Automation , Databases as Topic , Electroencephalography , Humans , Signal Processing, Computer-Assisted
5.
Radiat Oncol ; 13(1): 52, 2018 Mar 27.
Article in English | MEDLINE | ID: mdl-29587782

ABSTRACT

BACKGROUND: The purpose of this work is to benchmark RapidPlan against clinical plans for liver Intensity-modulated radiotherapy (IMRT) treatment of patients with special anatomical characteristics, and to investigate the prediction capability of the general model (Model-G) versus our specific model (Model-S). METHODS: A library consisting of 60 liver cancer patients with IMRT planning was used to set up two models (Model-S, Model-G), using the RapidPlan knowledge-based planning system. Model-S consisted of 30 patients with special anatomical characteristics where the distance from planning target volume (PTV) to the right kidney was less than three centimeters and Model-G was configurated using all 60 patients in this library. Knowledge-based IMRT plans were created for the evaluation group formed of 13 patients similar to those included in Model-S by Model-G, Model-S and manually (M), named RPG-plans, RPS-plans and M-plans, respectively. The differences in the dose-volume histograms (DVHs) were compared, not only between RP-plans and their respective M-plans, but also between RPG-plans and RPS-plans. RESULTS: For all 13 patients, RapidPlan could automatically produce clinically acceptable plans. Comparing RP-plans to M-plans, RP-plans improved V95% of PTV and had greater dose sparing in the right kidney. For the normal liver, RPG-plans delivered similar doses, while RPS-plans delivered a higher dose than M-plans. With respect to RapidPlan models, RPS-plans had better conformity index (CI) values and delivered lower doses to the right kidney V20Gy and maximizing point doses to spinal cord, while delivering higher doses to the normal liver. CONCLUSION: The study shows that RapidPlan can create high-quality plans, and our specific model can improve the CI of PTV, resulting in more sparing of OAR in IMRT for individual liver cancer patients.


Subject(s)
Liver Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Humans , Organs at Risk/radiation effects , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...