ABSTRACT
Black locust (Robinia pseudoacacia) is a tree in the subfamily Faboideae, native to North America, that has been naturalized and widely planted in temperate Europe and Asia. Black locust has important ecological and economic value, but its quality needs improvement. Hybridization programs are important for black locust breeding, but the low rate of fruit set after controlled pollination limits both its breeding and that of other monoclinous plant species that share this problem. In this study, we investigated gene expression in emasculated black locust flowers using the cDNA-amplified fragment length polymorphism technique to determine why the rate of fruit set is low after controlled pollination. Flowers that were emasculated after being frozen in liquid nitrogen were used as controls. Changes in the flower transcriptome were more dramatic at 5 h after emasculation than at 48 h. Injury caused by emasculation decreased the expression levels of genes associated with metabolism, growth regulation, signal transduction, and photosynthesis, and it increased the expression of genes related to stress-response metabolism, signal transduction, and promotion of senescence. The changes in the expression levels of these genes had negative effects on sugar metabolism, protein metabolism, lipid metabolism, energy metabolism, matter transport, signal transduction, osmotic regulation, pH regulation, and photosynthesis. Thus, emasculation accelerated flower senescence, resulting in low fruit set.
Subject(s)
Amplified Fragment Length Polymorphism Analysis , DNA, Complementary , Flowers/genetics , Robinia/genetics , Transcriptome , Computational Biology/methods , Gene Expression Profiling , Gene Expression Regulation, Plant , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Photosynthesis/genetics , Quantitative Trait, Heritable , Robinia/growth & development , Robinia/metabolism , Signal Transduction , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolismABSTRACT
Black locust (Robinia pseudoacacia L.) is an ecologically and economically important species. However, it has relatively underdeveloped genomic resources, and this limits gene discovery and marker-assisted selective breeding. In the present study, we obtained large-scale transcriptome data using a next-generation sequencing platform to compensate for the lack of black locust genomic information. Increasing the amount of transcriptome data for black locust will provide a valuable resource for multi-gene phylogenetic analyses and will facilitate research on the mechanisms whereby conserved genes and functions are maintained in the face of species divergence. We sequenced the black locust transcriptome from a cDNA library of multiple tissues and individuals on an Illumina platform, and this produced 108,229,352 clean sequence reads. The high-quality overlapping expressed sequence tags (ESTs) were assembled into 36,533 unigenes, and 4781 simple sequence repeats were characterized. A large collection of high-quality ESTs was obtained, de novo assembled, and characterized. Our results markedly expand the previous transcript catalogues of black locust and can gradually be applied to black locust breeding programs. Furthermore, our data will facilitate future research on the comparative genomics of black locust and related species.
Subject(s)
Expressed Sequence Tags , Robinia/genetics , Gene Expression Regulation, Plant/genetics , Gene Library , Genome, Plant/genetics , High-Throughput Nucleotide SequencingABSTRACT
The magnitude of inbreeding depression within populations is important for the evolution and maintenance of mixed mating systems. However, data are sparse on the magnitude of inbreeding depression in Robinia pseudoacacia. In this study, we compared differences in the mature seed set per fruit, seed mass, germination success, and seedling growth between self- and cross-pollination treatments and estimated the inbreeding depression at 3 stages: seed maturation, seedling emergence, and seedling growth at 10 and 20 weeks. We found that progenies resulting from cross-pollination treatments showed significantly higher fitness than progenies resulting from self-pollination, causing high levels of inbreeding depression. Inbreeding depression was not uniformly manifested, however, over the 3 stages. Inbreeding depression was the greatest between fertilization and seed maturation stage (δ = 0.5419), and the seedling emergence (0.3654) stage was second. No significant differences in seedling growth were observed between selfed and crossed progenies. The cumulative inbreeding depression (δ) across all 3 stages averaged 0.7452. Inbreeding depression may promote outcrossing in R. pseudoacacia by acting as a post-pollination barrier to selfing. The large difference in the seed set between self- and cross-pollination that we detected indicated that inbreeding depression would probably be a reasonable explanation for the high abortion and low seed set in R. pseudoacacia.
Subject(s)
Robinia/growth & development , Seeds/growth & development , Self-Fertilization , Germination , Inbreeding , Phenotype , Pollination , Robinia/genetics , Seedlings/genetics , Seedlings/growth & development , Seeds/geneticsABSTRACT
The black locust (Robinia pseudoacacia) is a forest legume that is highly valued as a honey plant and for its wood. We explored the effect of short-term spaceflight on development of R. pseudoacacia seedlings derived from seeds that endured a 15-day flight; the genetic diversity and variation of plants sampled from space-mutagenized seeds were compared to plants from parallel ground-based control seeds using molecular markers and morphological traits. In the morphology analysis, the space-mutagenized group had apparent variation compared with the control group in morphological traits, including plant height, basal diameter, number of branches, branch stipular thorn length, branch stipular thorn middle width, leaflet vertex angle, and tippy leaf vertex angle. Simple sequence repeat (SSR) and sequence-related amplified polymorphism (SRAP) molecular marker analyses showed a slightly higher levels of genetic diversity in the space-mutagenized group compared to the control group. In the SRAP analysis, the space-mutagenized group had 115 polymorphic bands vs 98 in the controls; 91.27% polymorphic loci vs 77.78% in the controls; 1.9127 ± 0.2834 alleles vs 1.7778 ± 0.4174 in the controls; Nei's genetic diversity (h) was 0.2930 ± 0.1631 vs 0.2688 ± 0.1862 in the controls, and the Shannon's information index (I) was 0.4452 ± 0.2177 vs 0.4031 ± 0.2596 in the controls. The number of alleles was significantly higher in the space-mutagenized group. In the SSR analysis, the space-mutagenized group also had more polymorphic bands (51 vs 46), a greater percentage of polymorphic loci (89.47% vs 80.70%); h was also higher (0.2534 ± 0.1533 vs 0.2240 ± 0.1743), as was I (0.3980 ± 0.2069 vs 0.3501 ± 0.2412). These results demonstrated that the range of genetic variation in the populations of R. pseudoacacia increased after spaceflight. It also suggested that the SSR and SRAP markers are effective markers for studying mutations and genetic diversity in R. pseudoacacia. The data provide valuable molecular evidence for the effects of the space environment on R. pseudoacacia and may contribute to future space-breeding programs involving forest trees.