Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
J Nanobiotechnology ; 22(1): 399, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970101

ABSTRACT

Spinal cord injury (SCI) represents a profound central nervous system affliction, resulting in irreversibly compromised daily activities and disabilities. SCI involves excessive inflammatory responses, which are characterized by the existence of high levels of proinflammatory M1 macrophages, and neuronal mitochondrial energy deficit, exacerbating secondary damage and impeding axon regeneration. This study delves into the mechanistic intricacies of SCI, offering insights from the perspectives of neuroimmune regulation and mitochondrial function, leading to a pro-fibrotic macrophage phenotype and energy-supplying deficit. To address these challenges, we developed a smart scaffold incorporating enzyme mimicry nanoparticle-ceriumoxide (COPs) into nanofibers (NS@COP), which aims to pioneer a targeted neuroimmune repair strategy, rescuing CGRP receptor on macrophage and concurrently remodeling mitochondrial function. Our findings indicate that the integrated COPs restore the responsiveness of pro-inflammatory macrophages to calcitonin gene-related peptide (CGRP) signal by up-regulating receptor activity modifying protein 1 (RAMP1), a vital component of the CGRP receptor. This promotes macrophage fate commitment to an anti-inflammatory pro-resolution M2 phenotype, then alleviating glial scar formation. In addition, NS@COP implantation also protected neuronal mitochondrial function. Collectively, our results suggest that the strategy of integrating nanozyme COP nanoparticles into a nanofiber scaffold provides a promising therapeutic candidate for spinal cord trauma via rational regulation of neuroimmune communication and mitochondrial function.


Subject(s)
Axons , Macrophages , Nanofibers , Nerve Regeneration , Spinal Cord Injuries , Animals , Axons/metabolism , Nanofibers/chemistry , Nerve Regeneration/drug effects , Mice , Macrophages/drug effects , Macrophages/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Rats , Tissue Scaffolds/chemistry , Nanoparticles/chemistry , Rats, Sprague-Dawley , Calcitonin Gene-Related Peptide/metabolism , Female , Mice, Inbred C57BL
2.
J Colloid Interface Sci ; 672: 266-278, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38843679

ABSTRACT

Diabetic wound, which is chronic skin disease, poses a significant challenge in clinical practice because of persistent inflammation and impaired angiogenesis. Recently, hydrogen has emerged as a novel therapeutic agent due to its superior antioxidant and anti-inflammatory properties. In this study, we engineered a poly (lactic-co-glycolic acid) (PLGA) electrospun nanofibre membrane loaded with citric acid (CA) and iron (Fe) nanoparticles, referred to as Fe@PLGA + CA. Our in vitro assays demonstrated that the Fe@PLGA + CA membrane continuously generated and released hydrogen molecules via a chemical reaction between Fe and CA in an acidic microenvironment created by CA. We also discovered that hydrogen can ameliorate fibroblast migration disorders by reducing the levels of matrix metalloproteinase 9 (MMP9). Furthermore, we confirmed that hydrogen can scavenge or biochemically neutralise accumulated reactive oxygen species (ROS), inhibit pro-inflammatory responses, and induce anti-inflammatory reactions. This, in turn, promotes vessel formation, wound-healing and accelerates skin regeneration. These findings open new possibilities for using elemental iron in skin dressings and bring us one step closer to implementing hydrogen-releasing biomedical materials in clinical practice.


Subject(s)
Hydrogen , Nanofibers , Polylactic Acid-Polyglycolic Acid Copolymer , Wound Healing , Wound Healing/drug effects , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Nanofibers/chemistry , Hydrogen/chemistry , Hydrogen/pharmacology , Animals , Iron/chemistry , Metal Nanoparticles/chemistry , Membranes, Artificial , Mice , Humans , Reactive Oxygen Species/metabolism , Particle Size , Surface Properties
3.
Adv Healthc Mater ; 13(17): e2304087, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38531346

ABSTRACT

Volumetric muscle loss (VML) is a severe form of muscle trauma that exceeds the regenerative capacity of skeletal muscle tissue, leading to substantial functional impairment. The abnormal immune response and excessive reactive oxygen species (ROS) accumulation hinder muscle regeneration following VML. Here, an interfacial cross-linked hydrogel-poly(ε-caprolactone) nanofiber composite, that incorporates both biophysical and biochemical cues to modulate the immune and ROS microenvironment for enhanced VML repair, is engineered. The interfacial cross-linking is achieved through a Michael addition between catechol and thiol groups. The resultant composite exhibits enhanced mechanical strength without sacrificing porosity. Moreover, it mitigates oxidative stress and promotes macrophage polarization toward a pro-regenerative phenotype, both in vitro and in a mouse VML model. 4 weeks post-implantation, mice implanted with the composite show improved grip strength and walking performance, along with increased muscle fiber diameter, enhanced angiogenesis, and more nerve innervation compared to control mice. Collectively, these results suggest that the interfacial cross-linked nanofiber-hydrogel composite could serve as a cell-free and drug-free strategy for augmenting muscle regeneration by modulating the oxidative stress and immune microenvironment at the VML site.


Subject(s)
Hydrogels , Muscle, Skeletal , Nanofibers , Regeneration , Animals , Nanofibers/chemistry , Mice , Regeneration/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Polyesters/chemistry , Oxidative Stress/drug effects , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Male , RAW 264.7 Cells , Macrophages/metabolism , Tissue Scaffolds/chemistry
4.
J Control Release ; 367: 791-805, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38341179

ABSTRACT

Epidural fibrosis (EF), associated with various biological factors, is still a major troublesome clinical problem after laminectomy. In the present study, we initially demonstrate that sensory nerves can attenuate fibrogenic progression in EF animal models via the secretion of calcitonin gene-related peptide (CGRP), suggesting a new potential therapeutic target. Further studies showed that CGRP could inhibit the reprograming activation of fibroblasts through PI3K/AKT signal pathway. We subsequently identified metformin (MET), the most widely prescribed medication for obesity-associated type 2 diabetes, as a potent stimulator of sensory neurons to release more CGRP via activating CREB signal way. We copolymerized MET with innovative polycaprolactone (PCL) nanofibers to develop a metformin-grafted PCL nanoscaffold (METG-PCLN), which could ensure stable long-term drug release and serve as favorable physical barriers. In vivo results demonstrated that local implantation of METG-PCLN could penetrate into dorsal root ganglion cells (DRGs) to promote the CGRP synthesis, thus continuously inhibit the fibroblast activation and EF progress for 8 weeks after laminectomy, significantly better than conventional drug loading method. In conclusion, this study reveals the unprecedented potential of sensory neurons to counteract EF through CGRP signaling and introduces a novel strategy employing METG-PCLN to obstruct EF by fine-tuning sensory nerve-regulated fibrogenesis.


Subject(s)
Calcitonin Gene-Related Peptide , Diabetes Mellitus, Type 2 , Polyesters , Animals , Calcitonin Gene-Related Peptide/metabolism , Phosphatidylinositol 3-Kinases , Fibrosis , Fibroblasts/metabolism
5.
Biomater Sci ; 12(5): 1131-1150, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38284828

ABSTRACT

Extracellular vesicles (EVs) are vesicles with lipid bilayer structures shed from the plasma membrane of cells. Microvesicles (MVs) are a subset of EVs containing proteins, lipids, nucleic acids, and other metabolites. MVs can be produced under specific cell stimulation conditions and isolated by modern separation technology. Due to their tumor homing and large volume, tumor cell-derived microvesicles (TMVs) have attracted interest recently and become excellent delivery carriers for therapeutic vaccines, imaging agents or antitumor drugs. However, preparing sufficient and high-purity TMVs and conducting clinical transformation has become a challenge in this field. In this review, the recent research achievements in the generation, isolation, characterization, modification, and application of TMVs in cancer therapy are reviewed, and the challenges facing therapeutic applications are also highlighted.


Subject(s)
Cell-Derived Microparticles , Extracellular Vesicles , Neoplasms , Humans , Cell-Derived Microparticles/chemistry , Cell-Derived Microparticles/metabolism , Cell-Derived Microparticles/pathology , Extracellular Vesicles/chemistry , Neoplasms/drug therapy , Cell Membrane
6.
Biomater Adv ; 155: 213683, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37925825

ABSTRACT

Liver cancer is among the leading cause of cancer related death worldwide. There is growing interest in using traditional Chinese medicines such as arsenic trioxide (ATO) to treat liver cancer. ATO have attracted attention due to its wide range of anti-cancer activities. However, the current ATO formulations are associated with drawbacks such as short half-life, lack of targeting ability towards solid tumors and apparent toxic side effects. Tumor microvesicles (TMVs) has shown encouraging results for the delivery of drugs to solid tumor. In this work, we designed ATO loaded TMVs further modified by SP94 peptide as liver cancer specific ligand (ATO@SP94-TMVs). This drug delivery system utilized SP94 peptide that selectively targets liver cancer cells while TMVs increase the accumulation of ATO at tumor site and activate immune response owing to the associated antigens. ATO@SP94-TMVs exhibited high encapsulation efficiency and tumor microenvironment triggered enhanced release of ATO in vitro. Cytotoxicity and uptake studies revealed remarkable inhibition and specific targeting of H22 cells. In addition, excellent immune response was detected in vitro, enhancing anti-tumor efficacy. Furthermore, a tumor inhibition rate of about 53.23 % was observed in H22 bearing tumor model. Overall, these results confirm that ATO@SP94-TMVs can be a promising nano drug delivery system for the future liver cancer therapy and improve its clinical applications.


Subject(s)
Drug Delivery Systems , Liver Neoplasms , Humans , Arsenic Trioxide/therapeutic use , Drug Delivery Systems/methods , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Peptides/therapeutic use , Tumor Microenvironment
7.
J Nanobiotechnology ; 21(1): 435, 2023 Nov 19.
Article in English | MEDLINE | ID: mdl-37981675

ABSTRACT

BACKGROUND: Bacterial infection, complex wound microenvironment and persistent inflammation cause delayed wound healing and scar formation, thereby disrupting the normal function and appearance of skin tissue, which is one of the most problematic clinical issues. Although Ag NPs have a strong antibacterial effect, they tend to oxidize and form aggregates in aqueous solution, which reduces their antibacterial efficacy and increases their toxicity to tissues and organs. Current research on scar treatment is limited and mainly relies on growth factors and drugs to reduce inflammation and scar tissue formation. Therefore, there is a need to develop methods that effectively combine drug delivery, antimicrobial and anti-inflammatory agents to modulate the wound microenvironment, promote wound healing, and prevent skin scarring. RESULTS: Herein, we developed an innovative Ag nanocomposite hydrogel (Ag NCH) by incorporating Ag nanoparticles (Ag NPs) into a matrix formed by linking catechol-modified hyaluronic acid (HA-CA) with 4-arm PEG-SH. The Ag NPs serve dual functions: they act as reservoirs for releasing Ag/Ag+ at the wound site to combat bacterial infections, and they also function as cross-linkers to ensure the sustained release of basic fibroblast growth factor (bFGF). The potent antibacterial effect of the Ag NPs embedded in the hydrogel against S.aureus was validated through comprehensive in vitro and in vivo analyses. The microstructural analysis of the hydrogels and the in vitro release studies confirmed that the Ag NCH possesses smaller pore sizes and facilitates a slower, more sustained release of bFGF. When applied to acute and infected wound sites, the Ag NCH demonstrated remarkable capabilities in reshaping the immune and regenerative microenvironment. It induced a shift from M1 to M2 macrophage polarization, down-regulated the expression of pro-inflammatory factors such as IL-6 and TNF-α, and up-regulated the expression of anti-inflammatory IL-10. Furthermore, the Ag NCH played a crucial role in regulating collagen deposition and alignment, promoting the formation of mature blood vessels, and significantly enhancing tissue reconstruction and scarless wound healing processes. CONCLUSIONS: We think the designed Ag NCH can provide a promising therapeutic strategy for clinical applications in scarless wound healing and antibacterial therapy.


Subject(s)
Cicatrix , Metal Nanoparticles , Humans , Anti-Bacterial Agents/pharmacology , Delayed-Action Preparations , Inflammation , Nanogels , Silver/pharmacology , Wound Healing , Nanocomposites
8.
J Mater Chem B ; 11(48): 11552-11561, 2023 12 13.
Article in English | MEDLINE | ID: mdl-37982207

ABSTRACT

Low efficiency of nerve growth and unstable release of loaded drugs have become a major problem in repairing peripheral nerve injury. Many intervention strategies were focused on simple drug loading, but have still been less effective. The key challenge is to establish a controlled release microenvironment to enable adequate nerve regeneration. In this study, we fabricate a multilayered compound nerve scaffold by electrospinning: with an anti-adhesive outer layer of polycaprolactone and an ECM-like inner layer consisting of a melatonin-loaded alginate hydrogel. We characterized the scaffold, and the loaded melatonin can be found to undergo controlled release. We applied them to a 15 mm rat model of sciatic nerve injury. After 16 weeks, the animals in each group were evaluated and compared for recovery of motor function, electrophysiology, target organ atrophy status, regenerative nerve morphology and relative protein expression levels of neural markers, inflammatory oxidative stress, and angiogenesis. We identify that the scaffold can improve functional ability evidenced by an increased sciatic functional index and nerve electrical conduction level. The antioxidant melatonin loaded in the scaffold reduces inflammation and oxidative stress in the reinnervated nerves, confirmed by increased HO-1 and decreased TNF-α levels in regenerating nerves. The relative expression of fast-type myosin was elevated in the target gastrocnemius muscle. An improvement in angiogenesis facilitates neurite extension and axonal sprouting. This scaffold can effectively restore the ECM-like microenvironment and improve the quality of nerve regeneration by controlled melatonin release, thus enlightening the design criteria on nerve scaffolds for peripheral nerve injury in the future.


Subject(s)
Melatonin , Peripheral Nerve Injuries , Rats , Animals , Melatonin/pharmacology , Hydrogels/pharmacology , Sciatic Nerve/physiology , Delayed-Action Preparations/pharmacology , Tissue Scaffolds , Nerve Regeneration , Extracellular Matrix
9.
J Colloid Interface Sci ; 648: 287-298, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37301153

ABSTRACT

Gene delivery for non-small-cell lung cancer treatment has been a challenge due to low nucleic acid binding ability, cell-wall barrier, and high cytotoxicity. Cationic polymers, such as the traditional "golden standard" polyethyleneimine (PEI) 25 kDa have emerged as a promising carrier for non-coding RNA delivery. However, the high cytotoxicity associated with its high molecular weight has limited its application in gene delivery. To address this limitation, herein, we designed a novel delivery system using fluorine-modified polyethyleneimine (PEI) 1.8 kDa for microRNA-942-5p-sponges non-coding RNA delivery. Compared to PEI 25 kDa, this novel gene delivery system demonstrated an approximately six-fold enhancement in endocytosis capability and maintain a higher cell viability. In vivo studies also showed good biosafety and anti-tumor effects, attribute to the positive charge of PEI and the hydrophobic and oleophobic properties of the fluorine-modified group. This study provides an effective gene delivery system for non-small-cell lung cancer treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Humans , Transfection , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Polyethyleneimine/chemistry , Fluorine , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Gene Transfer Techniques , MicroRNAs/genetics , RNA, Untranslated
10.
Biomater Sci ; 11(15): 5301-5319, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37357799

ABSTRACT

Liver cancer (LC), one of the most common malignant primary tumors, presents a poor prognosis, high morbidity rate, and poor clinical outcomes. Despite conventional treatments have been applied prior to the deterioration, their clinical benefits were still limited. Arsenic trioxide (ATO), a toxic Chinese medicine, has been proven to efficiently inhibit the growth of LC both in vitro and in vivo. However, its therapeutic effects are hindered by poor pharmacokinetics and dose-limited toxicity. In this study, we developed a pH-responsive nanoplatform (PEG-MSN@ATO) consisting of mesoporous silica nanoparticles (MSN) that were modified with amino groups, loaded with ATO, and grafted with PEG to achieve the pH-triggered release and regulate CD8+ T cells and Treg cells in the tumor microenvironment (TME). PEG-MSN@ATO were characterized by uniform size, good loading efficiency, pH-responsive release features, decreased macrophage uptake, and enhanced dendritic cell activation in vitro. Furthermore, in vivo studies demonstrated that PEG-MSN@ATO enhanced the antitumor efficacy by inducing apoptosis and ROS production, inhibiting tumor cell proliferation and metastasis, and activating antitumor immunity within the TME. PEG-MSN@ATO also reduced the system toxicity of ATO by controlling the pH-trigger release in the tumor site. These results indicate that the PEG-MSN@ATO represents a promising drug delivery platform for reducing toxicity and enhancing the therapeutic efficacy of ATO against LC.


Subject(s)
Liver Neoplasms , Nanoparticles , Humans , Arsenic Trioxide/therapeutic use , Silicon Dioxide , CD8-Positive T-Lymphocytes , Drug Carriers , Cell Line, Tumor , Drug Delivery Systems/methods , Liver Neoplasms/drug therapy , Hydrogen-Ion Concentration , Tumor Microenvironment
11.
J Colloid Interface Sci ; 646: 399-412, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37207422

ABSTRACT

Graphdiyne (GDY) is a kind of nanomaterial from the graphene carbon family with excellent physical and chemical properties. Despite some applications in medical engineering, GDY has not been used as an electroactive scaffold for tissue regeneration because of its unclear in vitro and in vivo biosafety profiles. Here, a conductive GDY nanomaterial-loaded polycaprolactone (PCL) scaffold was prepared by electrospinning technique. For the first time, the biocompatibility of GDY-based scaffold was assessed at the cellular and animal levels in a peripheral nerve injury (PNI) model. The findings indicated that the conductive three-dimensional (3D) GDY/PCL nerve guide conduits (NGCs) could significantly improve the proliferation, adhesion and glial expression of Schwann cells (SCs). The conduits were implanted into a rat 10-mm sciatic nerve defect model for 3 months in vivo. The toxicity of scaffolds to the organs was negligible, while the GDY/PCL NGCs significantly promoted myelination and axonal growth by upregulating the expression levels of SC marker (S100 ß protein), Myelin basic protein (MBP), and axon regeneration marker (ß3-tubulin protein (Tuj1) and neurofilament protein 200 (NF200)). In addition, upregulation of vascular factor expression in GDY/PCL NGC group suggested the potential role in angiogenesis to improve nerve repair by GDY nanomaterials. Our findings provide new perspectives on biocompatibility and effectiveness of GDY nanomaterial scaffold in peripheral nerve regeneration for preclinical application.


Subject(s)
Graphite , Nanofibers , Rats , Animals , Graphite/pharmacology , Graphite/chemistry , Rats, Sprague-Dawley , Tissue Scaffolds/chemistry , Nanofibers/chemistry , Axons , Nerve Regeneration/physiology
12.
J Nanobiotechnology ; 21(1): 129, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37055835

ABSTRACT

BACKGROUND: Excessive oxidative stress at the wound sites always leads to a prolonged healing and even causes chronic inflammatory wounds. Therefore, antioxidative dressings with multiple features are desired to improve wound healing performance. Herein, we fabricated a ROS-scavenging hybrid hydrogel by incorporating mussel-inspired fullerene nanocomposites (C60@PDA) into gelatin methacryloyl (GelMA) hydrogel. RESULTS: The developed C60@PDA/GelMA hydrogel showed a sustainable free radical scavenging ability, and eliminated ROS to protect cells against external oxidative stress damage. Besides, the hydrogel presented favorable cytocompatibility, hemocompatibility, and antibacterial ability in vitro. Furthermore, in a mouse full-thickness wound defect model, the in situ forming hybrid hydrogel accelerated wound closure by 38.5% and 42.9% on day 3 and day 7 over the control. Histological results demonstrated that hybrid hydrogels effectively enhanced wound healing on re-epithelialization, collagen deposition and angiogenesis. CONCLUSION: Collectively, the C60@PDA/GelMA hydrogel could be a promising dressing for promoting cutaneous wound repair.


Subject(s)
Fullerenes , Nanocomposites , Animals , Mice , Hydrogels , Wound Healing , Fullerenes/pharmacology , Reactive Oxygen Species , Disease Models, Animal , Nanocomposites/therapeutic use , Anti-Bacterial Agents/pharmacology
13.
Orthop Surg ; 14(11): 2822-2836, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36181336

ABSTRACT

OBJECTIVE: The current diagnostic criteria for periprosthetic joint infection (PJI) are diverse and controversial, leading to delayed diagnosis. This study aimed to evaluate and unify their diagnostic accuracy and the threshold selection of serum and synovial routine tests for PJI at an early stage. METHODS: We searched the MEDLINE and Embase databases for retrospective or prospective studies which reported preoperative-available assays (serum, synovial, or culture tests) for the diagnosis of chronic PJI among inflammatory arthritis (IA) or non-IA populations from January 1, 2000 to June 30, 2022. Threshold effective analysis was performed on synovial polymorphonuclear neutrophils (PMN%), synovial white blood cell (WBC), serum C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR) to find the relevant cut-offs. RESULTS: Two hundred and sixteen studies and information from 45,316 individuals were included in the final analysis. Synovial laboratory-based α-defensin and calprotectin had the best comprehensive sensitivity (0.91 [0.86-0.94], 0.95 [0.88-0.98]) and specificity (0.96 [0.94-0.97], 0.95 [0.89-0.98]) values. According to the threshold effect analysis, the recommended cut-offs are 70% (sensitivity 0.89 [0.85-0.92], specificity 0.90 [0.87-0.93]), 4100/µL (sensitivity 0.90 [0.87-0.93], specificity 0.97 [0.93-0.98]), 13.5 mg/L (sensitivity 0.84 [0.78-0.89], specificity 0.83 [0.73-0.89]), and 30 mm/h (sensitivity 0.79 [0.74-0.83], specificity 0.78 [0.72-0.83]) for synovial PMN%, synovial WBC, serum CRP, and ESR, respectively, and tests seem to be more reliable among non-IA patients. CONCLUSIONS: The laboratory-based synovial α-defensin and synovial calprotectin are the two best independent preoperative diagnostic tests for PJI. A cut off of 70% for synovial PMN% and tighter cut-offs for synovial WBC and serum CRP could have a better diagnostic accuracy for non-IA patients with chronic PJI.


Subject(s)
Arthritis, Infectious , Arthroplasty, Replacement, Hip , Prosthesis-Related Infections , alpha-Defensins , Humans , C-Reactive Protein/analysis , Diagnostic Tests, Routine , Leukocyte L1 Antigen Complex , Prospective Studies , Prosthesis-Related Infections/diagnosis , Retrospective Studies , Synovial Fluid
14.
Cyborg Bionic Syst ; 2022: 9892526, 2022.
Article in English | MEDLINE | ID: mdl-36285317

ABSTRACT

Graphdiyne (GDY) is a new member of the family of carbon-based nanomaterials with hybridized carbon atoms of sp and sp2, including α, ß, γ, and (6,6,12)-GDY, which differ in their percentage of acetylene bonds. The unique structure of GDY provides many attractive features, such as uniformly distributed pores, highly π-conjugated structure, high thermal stability, low toxicity, biodegradability, large specific surface area, tunable electrical conductivity, and remarkable thermal conductivity. Therefore, GDY is widely used in energy storage, catalysis, and energy fields, in addition to biomedical fields, such as biosensing, cancer therapy, drug delivery, radiation protection, and tissue engineering. In this review, we first discuss the synthesis of GDY with different shapes, including nanotubes, nanowires, nanowalls, and nanosheets. Second, we present the research progress in the biomedical field in recent years, along with the biodegradability and biocompatibility of GDY based on the existing literature. Subsequently, we present recent research results on the use of nanomaterials in peripheral nerve regeneration (PNR). Based on the wide application of nanomaterials in PNR and the remarkable properties of GDY, we predict the prospects and current challenges of GDY-based materials for PNR.

15.
ACS Appl Bio Mater ; 5(10): 4741-4759, 2022 10 17.
Article in English | MEDLINE | ID: mdl-36102324

ABSTRACT

Stem cells play a critical role in peripheral nerve regeneration. Nerve scaffolds fabricated by specific materials can help induce the neurogenic differentiation of stem cells. Therefore, it is a potential strategy to enhance therapeutic efficiency. Graphene family nanomaterials are widely applied in repairing peripheral nerves. However, the mechanism underlying the pro-regeneration effects remains elusive. In this review, we first discuss the properties of graphene family nanomaterials, including monolayer and multilayer graphene, few-layer graphene, graphene oxide, reduced graphene oxide, and graphene quantum dots. We also introduce their applications in regulating stem cell differentiation. Then, we review the potential mechanisms of the neurogenic differentiation of stem cells facilitated by the materials. Finally, we discuss the existing challenges in this field to advance the development of nerve biomaterials.


Subject(s)
Graphite , Nanostructures , Biocompatible Materials , Cell Differentiation , Graphite/pharmacology , Nanostructures/therapeutic use , Nerve Regeneration , Peripheral Nerves , Stem Cells , Tissue Engineering
16.
Biomater Adv ; 135: 212727, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35929199

ABSTRACT

Peripheral nerve injury (PNI) caused by injury may influence the patients' lifelong mobility unless there is an appropriate treatment. Tissue engineering has become a hot field to replace traditional autologous nerve transplantation due to its low surgical damage and easy-to-industrial advantages. Graphene (GR) is a kind of carbon nanomaterial with good electrical and mechanical properties that satisfy the demand for a good tissue scaffold for nerve regeneration. Herein, a novel and biosafe hydrogel is fabricated by using graphene and sodium alginate (GR-SA) together. This hydrogel not only can mimic the nerve growth microenvironment but also can promote the expression of neurotrophic substances and growth factors. Additionally, GR-SA hydrogel can significantly reduce inflammatory factors. Moreover, the results of both in vitro and in vivo tests demonstrate that GR-SA hydrogel has a promising prospect in PNI regeneration.


Subject(s)
Graphite , Nanoparticles , Peripheral Nerve Injuries , Alginates , Biomimetics , Humans , Hydrogels , Nanoparticles/therapeutic use , Peripheral Nerve Injuries/therapy
18.
Eur J Pharm Biopharm ; 177: 273-288, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35868489

ABSTRACT

With the rapid increase in multidrug-resistance against antibiotics, higher doses of antibiotics or more effective antibiotics are needed to treat diseases, which ultimately leads to a decrease in the body's immunity and seriously threatens human health worldwide. The efficiency of antibiotics has been a large challenge for years. To overcome this problem, many carriers are utilized for anti-bacteria, attempting to optimize the delivery of such drugs and transport them safely and directly to the site of disease. Blood cell-based drug delivery systems present several advantages as compared to polymeric delivery system. These blood cells including red blood cells (RBCs), leukocytes, platelets. The blood cells and their membranes can both be used as drug carriers to deliver antibacterial drugs. In addition, blood cells can overcome many physiological/pathological obstacles faced by nanoparticles in vivo and effectively deliver drugs to the site of the disease. In this paper, we review studies on blood cell-based delivery systems used in antibacterial therapy, and analyze different roles in antibacterial therapy, which provide basis for further study in this field.


Subject(s)
Biomimetics , Nanoparticles , Anti-Bacterial Agents/therapeutic use , Drug Carriers , Drug Delivery Systems , Erythrocytes , Humans
19.
Mater Today Bio ; 13: 100211, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35198959

ABSTRACT

Peripheral nerve injury usually impairs neurological functions. The excessive oxidative stress and disrupted bioelectrical conduction gives rise to a hostile microenvironment and impedes nerve regeneration. Therefore, it is of urgent need to develop tissue engineering products which help alleviate the oxidative insults and restore bioelectrical signals. Melatonin (MLT) is an important endogenous hormone that diminishes the accumulation of reactive oxygen species. Reduced graphene oxide (RGO) possesses the excellent electrical conductivity and biocompatibility. In this study, a multilayered MLT/RGO/Polycaprolactone (PCL) composite scaffold was fabricated with beaded nanostructures to improve cell attachment and proliferation. It also exhibited stable mechanical properties by high elastic modulus and guaranteed structural integrity for nerve regeneration. The live/dead cell staining and cell counting kit assay were performed to evaluate the toxicity of the scaffold. JC-1 staining was carried out to assess the mitochondrial potential. The composite scaffold provided a biocompatible interface for cell viability and improved ATP production for energy supply. The scaffold improved the sensory and locomotor function recovery by walking track analysis and electrophysiological evaluation, reduced Schwann cell apoptosis and increased its proliferation. It further stimulated myelination and axonal outgrowth by enhancing S100ß, myelin basic protein, ß3-tubulin, and GAP43 levels. The findings demonstrated functional and morphological recovery by this biomimetic scaffold and indicated its potential for translational application.

20.
Adv Mater ; 34(12): e2107300, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34865257

ABSTRACT

The treatment of postoperative infection caused by multidrug-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), has become an intractable clinical challenge owing to its low therapeutic efficacy and high risk of recurrence. Apart from imperfect antibacterial therapies, induction of insufficient immunogenicity, required for the successful clearance of a pathogen, may also contribute to the problem. Herein, an ultra-micro photosensitizer, AgB nanodots, using photothermal therapy, photodynamic therapy, and Ag+ ion sterilization, are utilized to efficiently clear invading MRSA both in vitro and in vivo. AgB nanodots are also found to upregulate host immunogenicity in a murine model and establish immunological memory by promoting the upregulated expression of danger signals that are commonly induced by stress-related responses, including sudden temperature spikes or excess reactive oxygen production. These stimulations boost the antibacterial effects of macrophages, dendritic cells, T cells, or even memory B cells, which is usually defined as infection-related immunogenic cell death. Hence, the proposed AgB nanodot strategy may offer a novel platform for the effective treatment of postoperative infection while providing a systematic immunotherapeutic strategy to combat persistent infections, thereby markedly reducing the incidence of recurrence following recovery from primary infections.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Photochemotherapy , Staphylococcal Infections , Animals , Anti-Bacterial Agents/pharmacology , Immunotherapy , Mice , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Staphylococcal Infections/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...