Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Mol Biol ; 101(4-5): 355-371, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31401729

ABSTRACT

KEY MESSAGE: Protoplasts can be used for genome editing using several different CRISPR systems, either separately or simultaneously, and that the resulting mutations can be recovered in regenerated non-chimaeric plants. Protoplast transfection and regeneration systems are useful platforms for CRISPR/Cas mutagenesis and genome editing. In this study, we demonstrate the use of Cpf1 (Cas12a) and nCas9-activation-induced cytidine deaminase (nCas9-Target-AID) systems to mutagenize Nicotiana tabacum protoplasts and to regenerate plants harboring the resulting mutations. We analyzed 20 progeny plants of Cas12a-mediated phytoene desaturase (PDS) mutagenized regenerants, as well as regenerants from wild-type protoplasts, and confirmed that their genotypes were inherited in a Mendelian manner. We used a Cas9 nickase (nCas9)-cytidine deaminase to conduct C to T editing of the Ethylene receptor 1 (ETR1) gene in tobacco protoplasts and obtained edited regenerates. It is difficult to obtain homozygous edits of polyploid genomes when the editing efficiency is low. A second round of mutagenesis of partially edited regenerants (a two-step transfection protocol) allowed us to derive ETR1 fully edited regenerants without the need for sexual reproduction. We applied three different Cas systems (SaCas9, Cas12a, and nCas9-Traget AID) using either a one-step or a two-step transfection platform to obtain triply mutated and/or edited tobacco regenerants. Our results indicate that these three Cas systems can function simultaneously within a single cell.


Subject(s)
Gene Editing/methods , Nicotiana/genetics , Bacterial Proteins/genetics , CRISPR-Cas Systems , Francisella/genetics , Homozygote , Plant Proteins/genetics , Tetraploidy
SELECTION OF CITATIONS
SEARCH DETAIL