Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters











Publication year range
1.
Biochem Biophys Res Commun ; 737: 150495, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39126861

ABSTRACT

This study aimed to investigate the potential of mesenchymal stem cells (MSCs) in alleviating diabetic lung injury by decreasing inflammation, fibrosis and recovering tissue macrophage homeostasis. To induce pulmonary injuries in an in vivo murine model, we utilized a streptozotocin (STZ), and high-fat diet (HFD) induced diabetic C57 mouse model. Subsequently, human umbilical cord-derived MSCs (hUC-MSCs) were administered through the tail vein on a weekly basis for a duration of 4 weeks. In addition, in vitro experiments involved co-culturing of isolated primary abdominal macrophages from diabetic mice and high glucose-stimulated MLE-12 cells with hUC-MSCs. The objective was to evaluate if hUC-MSCs co-culturing could effectively mitigate cell inflammation and fibrosis. Following hUC-MSCs injection, diabetic mice displayed enhanced pulmonary functional parameters, reduced pulmonary fibrosis, and diminished inflammation. Notably, the dynamic equilibrium of lung macrophages shifted from the M1 phenotype to the M2 phenotype, accompanied by a notable reduction in various indicators associated with inflammation and fibrosis. Results from cell co-culturing experiments further supported this trend, demonstrating a reduction in inflammatory and fibrotic indicators. In conclusion, our findings suggest that hUC-MSCs treatment holds promise in mitigating diabetic pulmonary injury by significantly reducing inflammation, fibrosis and maintain tissue macrophage homeostasis within the lungs. This study sheds light on the therapeutic potential of hUC-MSCs in managing diabetic complications affecting the pulmonary system.

3.
Sci Adv ; 10(21): eado1755, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787946

ABSTRACT

State-of-the-art technology for cyclohexanone oxime production typically demands elevated temperature and pressure, along with the utilization of expensive hydroxylamine sulfate or oxidants. Here, we propose an electrochemistry-assisted cascade strategy for the efficient cyclohexanone ammoximation under ambient conditions by using in situ cathode-generated green oxidants of reactive oxygen species (ROS) such as OOH* and H2O2. This electrochemical reaction can take place at the cathode, achieving over 95% yield, 99% selectivity of cyclohexanone oxime, and an electron-to-oxime (ETO) efficiency of 96%. Mechanistic analysis reveals that, in addition to the direct ammoximation by in situ-generated OOH* by electrocatalytic ORR, Ti-MOR also play a major role in capturing OOH* directly and converting the in situ-generated H2O2 to OOH*, thus accelerating the ORR-coupled cascade production of cyclohexanone oxime. This work paves a mild, economical, and sustainable energy-efficient electrocatalytic route for the oxime production using oxygen, ammonium bicarbonate, and cyclohexanone.

4.
Nat Commun ; 15(1): 4383, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782909

ABSTRACT

Macrophages (Mφ) autophagy is a pivotal contributor to inflammation-related diseases. However, the mechanistic details of its direct role in acute kidney injury (AKI) were unclear. Here, we show that Mφ promote AKI progression via crosstalk with tubular epithelial cells (TECs), and autophagy of Mφ was activated and then inhibited in cisplatin-induced AKI mice. Mφ-specific depletion of ATG7 (Atg7Δmye) aggravated kidney injury in AKI mice, which was associated with tubulointerstitial inflammation. Moreover, Mφ-derived exosomes from Atg7Δmye mice impaired TEC mitochondria in vitro, which may be attributable to miR-195a-5p enrichment in exosomes and its interaction with SIRT3 in TECs. Consistently, either miR-195a-5p inhibition or SIRT3 overexpression improved mitochondrial bioenergetics and renal function in vivo. Finally, adoptive transfer of Mφ from AKI mice to Mφ-depleted mice promotes the kidney injury response to cisplatin, which is alleviated when Mφ autophagy is activated with trehalose. We conclude that exosomal miR-195a-5p mediate the communication between autophagy-deficient Mφ and TECs, leading to impaired mitochondrial biogenetic in TECs and subsequent exacerbation of kidney injury in AKI mice via miR-195a-5p-SIRT3 axis.


Subject(s)
Acute Kidney Injury , Autophagy , Cisplatin , Macrophages , MicroRNAs , Mitochondria , Sirtuin 3 , Animals , Humans , Male , Mice , Acute Kidney Injury/metabolism , Acute Kidney Injury/genetics , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Autophagy/drug effects , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein 7/metabolism , Cisplatin/pharmacology , Disease Models, Animal , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Exosomes/metabolism , Kidney/pathology , Kidney/metabolism , Kidney Tubules/pathology , Kidney Tubules/metabolism , Macrophages/metabolism , Macrophages/drug effects , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Sirtuin 3/metabolism , Sirtuin 3/genetics , Trehalose/pharmacology
5.
Exp Neurol ; 377: 114797, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38670252

ABSTRACT

Diabetic is a major contributor to the unfavorable prognosis of ischemic stroke. However, intensive hypoglycemic strategies do not improve stroke outcomes, implying that diabetes may affect stroke outcomes through other ways. Ferroptosis is a novel programmed cell death pathway associated with the development of diabetes and ischemic stroke. This study aimed to investigate the effect of streptozotocin (STZ)-induced diabetes on ferroptosis after stroke from the immune cell perspective, and to provide a theoretical foundation for the clinical management of ischemic stroke in patients with diabetes. The results revealed that STZ-induced diabetes not only facilitates the infiltration of neutrophils into the brain after stroke, but also upregulates the expression of lipocalin 2 (LCN2) in neutrophils. LCN2 promotes lipid peroxide accumulation by increasing intracellular ferrous ions, which intensify ferroptosis in major brain cell populations, especially neurons. Our findings suggest that STZ-induced diabetes aggravates ischemic stroke partially by mediating ferroptosis through neutrophil-derived LCN2. These data contribute to improved understanding of post-stroke immune regulation in diabetes, and offer a potentially novel therapeutic target for the management of acute-stage ischemic stroke complicated with diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Ferroptosis , Ischemic Stroke , Lipocalin-2 , Mice, Inbred C57BL , Neurons , Neutrophils , Up-Regulation , Lipocalin-2/metabolism , Animals , Ferroptosis/physiology , Ferroptosis/drug effects , Neutrophils/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/pathology , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Male , Neurons/metabolism , Neurons/pathology , Neurons/drug effects , Mice
6.
Nature ; 627(8003): 313-320, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38480964

ABSTRACT

Intrinsically stretchable electronics with skin-like mechanical properties have been identified as a promising platform for emerging applications ranging from continuous physiological monitoring to real-time analysis of health conditions, to closed-loop delivery of autonomous medical treatment1-7. However, current technologies could only reach electrical performance at amorphous-silicon level (that is, charge-carrier mobility of about 1 cm2 V-1 s-1), low integration scale (for example, 54 transistors per circuit) and limited functionalities8-11. Here we report high-density, intrinsically stretchable transistors and integrated circuits with high driving ability, high operation speed and large-scale integration. They were enabled by a combination of innovations in materials, fabrication process design, device engineering and circuit design. Our intrinsically stretchable transistors exhibit an average field-effect mobility of more than 20 cm2 V-1 s-1 under 100% strain, a device density of 100,000 transistors per cm2, including interconnects and a high drive current of around 2 µA µm-1 at a supply voltage of 5 V. Notably, these achieved parameters are on par with state-of-the-art flexible transistors based on metal-oxide, carbon nanotube and polycrystalline silicon materials on plastic substrates12-14. Furthermore, we realize a large-scale integrated circuit with more than 1,000 transistors and a stage-switching frequency greater than 1 MHz, for the first time, to our knowledge, in intrinsically stretchable electronics. Moreover, we demonstrate a high-throughput braille recognition system that surpasses human skin sensing ability, enabled by an active-matrix tactile sensor array with a record-high density of 2,500 units per cm2, and a light-emitting diode display with a high refreshing speed of 60 Hz and excellent mechanical robustness. The above advancements in device performance have substantially enhanced the abilities of skin-like electronics.


Subject(s)
Equipment Design , Skin , Transistors, Electronic , Wearable Electronic Devices , Humans , Silicon , Nanotubes, Carbon , Touch
7.
Mol Neurobiol ; 61(4): 2411-2429, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37884768

ABSTRACT

The neurological injury and repair mechanisms after ischemic stroke are complex. The inflammatory response is present throughout stroke onset and functional recovery, in which CD4 + T helper(Th) cells play a non-negligible role. Th17 cells, differentiated from CD4 + Th cells, are regulated by various extracellular signals, transcription factors, RNA, and post-translational modifications. Th17 cells specifically produce interleukin-17A(IL-17A), which has been reported to have pro-inflammatory effects in many studies. Recently, experimental researches showed that Th17 cells and IL-17A play an important role in promoting stroke pathogenesis (atherosclerosis), inducing secondary damage after stroke, and regulating post-stroke repair. This makes Th17 and IL-17A a possible target for the treatment of stroke. In this paper, we review the mechanism of action of Th17 cells and IL-17A in ischemic stroke and the progress of research on targeted therapy.


Subject(s)
Ischemic Stroke , Stroke , Humans , Interleukin-17 , Th17 Cells/pathology , Ischemic Stroke/pathology , Stroke/pathology , Cell Differentiation , Th1 Cells
8.
World J Gastroenterol ; 29(20): 3157-3167, 2023 May 28.
Article in English | MEDLINE | ID: mdl-37346159

ABSTRACT

BACKGROUND: It has been confirmed that three-dimensional (3D) imaging allows easier identification of bile duct anatomy and intraoperative guidance of endoscopic retrograde cholangiopancreatography (ERCP), which reduces the radiation dose and procedure time with improved safety. However, current 3D biliary imaging does not have good real-time fusion with intraoperative imaging, a process meant to overcome the influence of intraoperative respiratory motion and guide navigation. The present study explored the feasibility of real-time continuous image-guided ERCP. AIM: To explore the feasibility of real-time continuous image-guided ERCP. METHODS: We selected 2 3D-printed abdominal biliary tract models with different structures to simulate different patients. The ERCP environment was simulated for the biliary phantom experiment to create a navigation system, which was further tested in patients. In addition, based on the estimation of the patient's respiratory motion, preoperative 3D biliary imaging from computed tomography of 18 patients with cholelithiasis was registered and fused in real-time with 2D fluoroscopic sequence generated by the C-arm unit during ERCP. RESULTS: Continuous image-guided ERCP was applied in the biliary phantom with a registration error of 0.46 mm ± 0.13 mm and a tracking error of 0.64 mm ± 0.24 mm. After estimating the respiratory motion, 3D/2D registration accurately transformed preoperative 3D biliary images to each image in the X-ray image sequence in real-time in 18 patients, with an average fusion rate of 88%. CONCLUSION: Continuous image-guided ERCP may be an effective approach to assist the operator and reduce the use of X-ray and contrast agents.


Subject(s)
Biliary Tract , Cholangiopancreatography, Endoscopic Retrograde , Humans , Cholangiopancreatography, Endoscopic Retrograde/adverse effects , Biliary Tract/diagnostic imaging , Bile Ducts/diagnostic imaging , Bile Ducts/surgery , Contrast Media , Fluoroscopy
9.
Exp Cell Res ; 429(2): 113655, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37253404

ABSTRACT

Lipotoxicity caused by excess free fatty acids, particularly saturated fatty acids (SFAs) such as palmitic acid (PA), is one of the most important pathogenesis of nonalcoholic fatty liver disease (NAFLD). However, unsaturated fatty acids (UFAs), such as oleic acid (OA), are nontoxic and can combat SFA-induced toxicity through alleviation of cell apoptosis, endoplasmic reticulum stress (ER stress) and lipids metabolism disorder. However, whether OA is able to regulate autophagy is largely unknown. So, this study aims to investigate the mechanism underlying OA mediated modulation of autophagy in hepatocytes and mice with NAFLD. In vitro, human hepatoma cell line HepG2 cells, human normal liver cells L-02 and mouse normal liver cells AML12 were treated with palmitic acid (PA)/tunicamycin (TM) or/and OA for 48 h. In vivo, C57/BL6 mice were fed with high fat diet (HFD) to induce NAFLD. And the HFD was partial replaced by olive oil to observe the protective effects of olive oil. We demonstrated that PA/TM impaired cell viability and induced cellular apoptosis in HepG2 cells and L-02 cells. Moreover, PA/TM induced autophagy impairment by reducing the nuclear translocation of transcription factor EB (TFEB) and inhibiting the activity of CTSB. However, OA substantially alleviated PA/TM induced cellular apoptosis and autophagy dysfunction in hepatocytes. Additionally, restoring autophagy function is able to reduce ER stress. Similarly, HFD for 20 weeks successfully established NAFLD model in C57/BL6 mice, and significant autophagy impairment were observed in liver tissues. Noteworthily, 30% replacement of HFD with olive oil had profoundly reversed NAFLD. It significantly impoved steatosis, and reduced autophagy dysfunction, ER stress and apoptosis in liver tissue. Conclusively, these data demonstrated that OA is able to effectively impove autophagy dysfunction under the context of both PA and ER stress inducer induced lipotoxicity, and OA mediated regulation of lysosome dysfunction through TFEB plays an important role, suggesting that the regulation of ER stress-autophagy axis is a critical mechanism in OA driven protection in NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Humans , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Oleic Acid/pharmacology , Oleic Acid/metabolism , Olive Oil/metabolism , Olive Oil/pharmacology , Liver/metabolism , Hepatocytes/metabolism , Palmitic Acid/pharmacology , Autophagy , Endoplasmic Reticulum Stress , Diet, High-Fat/adverse effects
10.
Pharmacol Res ; 192: 106788, 2023 06.
Article in English | MEDLINE | ID: mdl-37146925

ABSTRACT

Senescence of bone marrow mesenchymal stem cells (BMSCs) is one of the leading causes of osteoporosis. SIRT3, an essential NAD-dependent histone deacetylase, is highly correlated with BMSC senescence-mediated bone degradation and mitochondrial/heterochromatic disturbance. S-sulfhydration of cysteine residues favorably enhances SIRT3 activity by forming persulfides. Nevertheless, the underlying molecular mechanism of SIRT3 S-sulfhydration on mitochondrial/heterochromatic homeostasis involved in BMSC senescence remains unknown. Here, we demonstrated that CBS and CSE, endogenous hydrogen sulfide synthases, are downregulated with BMSC senescence. Exogenous H2S donor NaHS-mediated SIRT3 augmentation rescued the senescent phenotypes of BMSCs. Conversely, SIRT3 deletion accelerated oxidative stress-induced BMSC senescence through mitochondrial dysfunction and the detachment of the heterochromatic protein H3K9me3 from the nuclear envelope protein Lamin B1. H2S-mediated SIRT3 S-sulfhydration modification rescued the disorganized heterochromatin and fragmented mitochondria induced by the S-sulfhydration inhibitor dithiothreitol, thus leading to elevated osteogenic capacity and preventing BMSC senescence. The antisenescence effect of S-sulfhydration modification on BMSCs was abolished when the CXXC sites of the SIRT3 zinc finger motif were mutated. In vivo, aged mice-derived BMSCs pretreated with NaHS were orthotopically transplanted to the ovariectomy-induced osteoporotic mice, and we proved that SIRT3 ameliorates bone loss by inhibiting BMSC senescence. Overall, our study for the first time indicates a novel role of SIRT3 S-sulfhydration in stabilizing heterochromatin and mitochondrial homeostasis in counteracting BMSC senescence, providing a potential target for the treatment of degenerative bone diseases.


Subject(s)
Osteoporosis , Sirtuin 3 , Female , Mice , Animals , Sirtuin 3/genetics , Sirtuin 3/metabolism , Heterochromatin/metabolism , Osteoporosis/metabolism , Mitochondria/metabolism , Cellular Senescence
11.
FASEB J ; 37(1): e22691, 2023 01.
Article in English | MEDLINE | ID: mdl-36515680

ABSTRACT

Macrophages (Mφ) infiltration is a common characteristic of acute kidney injury (AKI). Exosomes-mediated cell communication between tubular epithelial cells (TECs) and Mφ has been suggested to be involved in AKI. Exosomes-derived from injured TECs could regulate Mφ polarization during AKI. However, little is known regarding how activated Mφ regulates kidney injury. To explore the role of activated Mφ in the AKI process, we revealed that Mφ-derived exosomes from AKI mice (ExosAKI ) caused mitochondria damage and induced TECs injury. Then, we detected the global miRNA expression profiles of MφNC and MφAKI and found that among the upregulated miRNAs, miR-195a-5p, which regulates mitochondria metabolism in cancer, was significantly increased in MφAKI . Due to the enrichment of miR-195a-5p in ExosAKI , the miR-195a-5p level in the kidney was elevated in AKI mice. More interestingly, based on the high expression of pri-miR-195a-5p in kidney-infiltrated Mφ, and the reduction of miR-195a-5p in kidney after depletion of Mφ in AKI mice, we confirmed that miR-195a-5p may be produced in infiltrated Mφ, and shuttled into TECs via ExosMφ . Furthermore, in vitro inhibition of miR-195a-5p alleviated the effect of ExosAKI induced mitochondrial dysfunction and cell injury. Consistently, antagonizing miR-195a-5p with a miR-195a-5p antagomir attenuated cisplatin-induced kidney injury and mitochondrial dysfunction in mice. These findings revealed that the Mφ exosomal miR-195a-5p derived from AKI mice played a critical pathologic role in AKI progression, representing a new therapeutic target for AKI.


Subject(s)
Acute Kidney Injury , Exosomes , MicroRNAs , Mice , Animals , Acute Kidney Injury/metabolism , Exosomes/metabolism , Epithelial Cells/metabolism , MicroRNAs/metabolism , Mitochondria/metabolism , Macrophages/metabolism
12.
Front Pharmacol ; 13: 974829, 2022.
Article in English | MEDLINE | ID: mdl-36081940

ABSTRACT

Autophagy is a highly conserved cellular progress for the degradation of cytoplasmic contents including micromolecules, misfolded proteins, and damaged organelles that has recently captured attention in kidney diseases. Basal autophagy plays a pivotal role in maintaining cell survival and kidney homeostasis. Accordingly, dysregulation of autophagy has implicated in the pathologies of kidney diseases. In this review, we summarize the multifaceted role of autophagy in kidney aging, maladaptive repair, tubulointerstitial fibrosis and discuss autophagy-related drugs in kidney diseases. However, uncertainty still remains as to the precise mechanisms of autophagy in kidney diseases. Further research is needed to clarify the accurate molecular mechanism of autophagy in kidney diseases, which will facilitate the discovery of a promising strategy for the prevention and treatment of kidney diseases.

13.
J Control Release ; 349: 118-132, 2022 09.
Article in English | MEDLINE | ID: mdl-35792186

ABSTRACT

Cytokine storms are a primary cause of multiple organ damage and death after severe infections, such as SARS-CoV-2. However, current single cytokine-targeted strategies display limited therapeutic efficacy. Here, we report that peritoneal M2 macrophage-derived extracellular vesicles (M2-EVs) are multitarget nanotherapeutics that can be used to resolve cytokine storms. In detail, primary peritoneal M2 macrophages exhibited superior anti-inflammatory potential than immobilized cell lines. Systemically administered M2-EVs entered major organs and were taken up by phagocytes (e.g., macrophages). M2-EV treatment effectively reduced excessive cytokine (e.g., TNF-α and IL-6) release in vitro and in vivo, thereby attenuating oxidative stress and multiple organ (lung, liver, spleen and kidney) damage in endotoxin-induced cytokine storms. Moreover, M2-EVs simultaneously inhibited multiple key proinflammatory pathways (e.g., NF-κB, JAK-STAT and p38 MAPK) by regulating complex miRNA-gene and gene-gene networks, and this effect was collectively mediated by many functional cargos (miRNAs and proteins) in EVs. In addition to the direct anti-inflammatory role, human peritoneal M2-EVs expressed angiotensin-converting enzyme 2 (ACE2), a receptor of SARS-CoV-2 spike protein, and thus could serve as nanodecoys to prevent SARS-CoV-2 pseudovirus infection in vitro. As cell-derived nanomaterials, the therapeutic index of M2-EVs can be further improved by genetic/chemical modification or loading with specific drugs. This study highlights that peritoneal M2-EVs are promising multifunctional nanotherapeutics to attenuate infectious disease-related cytokine storms.


Subject(s)
Cytokine Release Syndrome , Extracellular Vesicles , Macrophages , MicroRNAs , Angiotensin-Converting Enzyme 2 , Animals , Cytokine Release Syndrome/drug therapy , Cytokines/metabolism , Endotoxins , Extracellular Vesicles/metabolism , Humans , Interleukin-6/metabolism , Macrophages/metabolism , MicroRNAs/metabolism , NF-kappa B/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Tumor Necrosis Factor-alpha/metabolism , p38 Mitogen-Activated Protein Kinases , COVID-19 Drug Treatment
14.
J Cell Mol Med ; 26(13): 3702-3715, 2022 07.
Article in English | MEDLINE | ID: mdl-35650472

ABSTRACT

Cisplatin is extensively used to treat malignancies. However, its clinical use is always limited due to the serious side effects, especially the nephrotoxicity. Matrine (MAT), a tetracyclic quinolizine alkaloid found in sophora genus, exerts multiple pharmacological roles, including anti-oxidative stress, anti-inflammation and anti-apoptosis, but the role of MAT on acute kidney injury (AKI) has not been evaluated. Here, we found that MAT potently inhibited cell injury induced by cisplatin in HK2 cells in vitro, which was associated with the inhibition of oxidative injury and NF-κB-mediated inflammation. Moreover, MAT treatment could activate the SIRT3/OPA1 axis and subsequently suppress the mitochondrial fragmentation and improve mitochondrial function. More importantly, SIRT3 knockdown suppressed the deacetylation of OPA1, which blocked the protective role of MAT on cisplatin-induced cell injury. In vivo, MAT treatment alleviated renal dysfunction, histological damage and inflammation induced by cisplatin in mice. Furthermore, consistent with the founding in vitro, MAT also activated SIRT3-mediated deacetylation of OPA1 and alleviated mitochondrial dysfunction in AKI mice. Our study proved that MAT protected against cisplatin-induced AKI by synergic anti-oxidative stress and anti-inflammation actions via SIRT3/OPA1-mediated improvement of mitochondrial function, suggesting that MAT may be a novel and effective strategy for AKI.


Subject(s)
Acute Kidney Injury , Alkaloids , GTP Phosphohydrolases , Quinolizines , Sirtuin 3 , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Alkaloids/pharmacology , Animals , Cisplatin/adverse effects , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Inflammation/metabolism , Kidney/pathology , Mice , Mitochondria/metabolism , Quinolizines/pharmacology , Sirtuin 3/genetics , Sirtuin 3/metabolism , Matrines
17.
New Phytol ; 234(2): 422-434, 2022 04.
Article in English | MEDLINE | ID: mdl-35048364

ABSTRACT

Root anatomical traits play crucial roles in understanding root functions and root form-function linkages. However, the root anatomy and form-function linkages of monocotyledonous and dicotyledonous herbs remain largely unknown. We measured order-based anatomical traits and mycorrhizal colonization rates of 32 perennial herbs of monocotyledons and dicotyledons in a temperate steppe. For monocots, relative constant proportion of cortex and mycorrhizal colonization rates, but increased cell-wall thickening of the endodermis and proportion of stele were observed across root orders, indicating a slight reduction in absorption capacity and improvement in transportation capacity across orders. For dicots, the cortex and mycorrhizal colonization disappeared in the fourth-order and/or fifth-order roots, whereas the secondary vascular tissue increased markedly, suggesting significant transition of root functions from absorption to transportation across root orders. The allometric relationships between stele and cortex differed across root orders and plant groups, suggesting different strategies to coordinate the absorption and transportation functions among plant groups. In summary, our results revealed different functional transition patterns across root orders and distinct strategies for coordinating the absorption and transportation of root system between monocots and dicots. These findings will contribute to our understanding of the root form and functions in herbaceous species.


Subject(s)
Magnoliopsida , Mycorrhizae , Magnoliopsida/anatomy & histology , Phenotype , Plant Roots/anatomy & histology , Plants
19.
Aging Dis ; 12(7): 1545-1553, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34631206

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) is caused by the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which leads to the disruption of immune system, exacerbated inflammation, and even multiple organ dysfunction syndrome. Regulatory T cells (Tregs) are an important subpopulation of T cells that exert immunosuppressive effects. Recent studies have demonstrated that the number of Tregs is significantly reduced in COVID-19 patients, and this reduction may affect COVID-19 patients on several aspects, such as weakening the effect of inflammatory inhibition, causing an imbalance in Treg/Th17 ratio, and increasing the risk of respiratory failure. Treg-targeted therapy may alleviate the symptoms and retard disease progression in COVID-19 patients. This study highlights the recent findings on the involvement of Tregs in the regulation of immune responses to COVID-19, and we hope to provide novel perspectives on the alternative immunotherapeutic strategies for this disease that is currently prevalent worldwide.

20.
Int J Clin Pract ; 75(11): e14811, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34490949

ABSTRACT

BACKGROUND: Early detection of renal damage in cirrhosis is critical to prevent hepatorenal syndrome (HRS). Although shear wave elastography (SWE) is useful for the assessment of kidney stiffness, no study has yet investigated the clinical feasibility of SWE for predicting HRS. OBJECTIVE: The aim of this study was to evaluate the value of SWE in predicting HRS in patients with cirrhosis and ascites. METHODS: A total of 131 patients with liver cirrhosis and ascites were recruited and followed them for 30 days for the development of AKI. Ultrasonographic examination was performed on all patients at hospital admission. The baseline clinical characteristics, renal biomarkers, renal resistive index (RI) and Young's modulus (YM) were recorded, and their relationship with development HRS was investigated. RESULTS: Sixty-eight patients developed AKI, 23 of them were HRS. Compared with patients in the non-AKI group and non-HRS group, the values of serum cystatin C (CystC), urine neutrophil gelatinase-associated lipocalin (NGAL) and renal RI were significantly increased, while the YM value was significantly decreased in the AKI group and HRS group. Correlation analysis showed that YM was significantly and negatively associated with serum creatinine, serum CystC, urinary NGAL and renal RI in addition to the significant association with the AKI stage. Logistic regression and ROC analysis showed that urine NGAL, renal RI and YM were closely related to the development of HRS. Among them, YM had a good predictive ability in predicting the occurrence of HRS, and the predictive value (AUC = 0.894) was improved when combined with renal RI. CONCLUSION: SWE can indicate renal injury in patients with cirrhosis and ascites. The combination of YM and RI has a good predictive value for the occurrence of HRS.


Subject(s)
Acute Kidney Injury , Elasticity Imaging Techniques , Hepatorenal Syndrome , Acute Kidney Injury/diagnostic imaging , Acute Kidney Injury/etiology , Ascites/diagnostic imaging , Ascites/etiology , Biomarkers , Creatinine , Hepatorenal Syndrome/diagnostic imaging , Humans , Liver Cirrhosis/complications , Liver Cirrhosis/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL