Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 109(3-2): 035207, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38632725

ABSTRACT

The National Ignition Facility has recently achieved successful burning plasma and ignition using the inertial confinement fusion (ICF) approach. However, there are still many fundamental physics phenomena that are not well understood, including the kinetic processes in the hohlraum. Shan et al. [Phys. Rev. Lett. 120, 195001 (2018)0031-900710.1103/PhysRevLett.120.195001] utilized the energy spectra of neutrons to investigate the kinetic colliding plasma in a hohlraum of indirect drive ICF. However, due to the typical large spatial-temporal scales, this experiment could not be well simulated by using available codes at that time. Utilizing our advanced high-order implicit PIC code, LAPINS, we were able to successfully reproduce the experiment on a large scale of both spatial and temporal dimensions, in which the original computational scale was increased by approximately seven to eight orders of magnitude. Not only is the validity of the explanation of the experiment confirmed by our simulations, i.e., the abnormally large width of neutron spectra comes from beam-target nuclear fusions, but also a different physical insight into the source of energetic deuterium ions is provided. The acceleration of deuterium ions can be categorized into two components: one is propelled by a sheath electric field created by the charge separation at the onset, while the other is a result of the reflection of the potential of the shock wave. The robustness of the acceleration mechanism is analyzed with varying initial conditions, e.g., temperatures, drifting velocity, and ion components. This paper might serve as a reference for benchmark simulations of upcoming simulation codes and may be relevant for future research on mixtures and entropy increments at plasma interfaces.

2.
Phys Rev Lett ; 130(9): 095101, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36930918

ABSTRACT

We report on charge state measurements of laser-accelerated carbon ions in the energy range of several MeV penetrating a dense partially ionized plasma. The plasma was generated by irradiation of a foam target with laser-induced hohlraum radiation in the soft x-ray regime. We use the tricellulose acetate (C_{9}H_{16}O_{8}) foam of 2 mg/cm^{3} density and 1 mm interaction length as target material. This kind of plasma is advantageous for high-precision measurements, due to good uniformity and long lifetime compared to the ion pulse length and the interaction duration. We diagnose the plasma parameters to be T_{e}=17 eV and n_{e}=4×10^{20} cm^{-3}. We observe the average charge states passing through the plasma to be higher than those predicted by the commonly used semiempirical formula. Through solving the rate equations, we attribute the enhancement to the target density effects, which will increase the ionization rates on one hand and reduce the electron capture rates on the other hand. The underlying physics is actually the balancing of the lifetime of excited states versus the collisional frequency. In previous measurement with partially ionized plasma from gas discharge and z pinch to laser direct irradiation, no target density effects were ever demonstrated. For the first time, we are able to experimentally prove that target density effects start to play a significant role in plasma near the critical density of Nd-glass laser radiation. The finding is important for heavy ion beam driven high-energy-density physics and fast ignitions. The method provides a new approach to precisely address the beam-plasma interaction issues with high-intensity short-pulse lasers in dense plasma regimes.

3.
Rev Sci Instrum ; 90(3): 033504, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30927823

ABSTRACT

The injecting time of the picosecond laser in an indirect-drive integrated fast ignition experiment was measured by using an x-ray streak camera. Despite overlapping spatially and temporally in experiments, the soft x-ray signal from the nanosecond laser ablating the inner wall of an Au hohlraum and the hard x-ray signal from the bremsstrahlung radiation of hot electrons generated by a picosecond laser were separated by different image processes by filtering and collimating the two signals differently. The time sequence between the two x-ray signals was analyzed to extract the injection time of the picosecond laser relative to the hohlraum emission. By tracking the neutron yield as a function of the injection time of the picosecond laser, a clear positive correlation between the neutron yield enhancement and the derived injection times was exhibited. The heating effect of the picosecond laser was confirmed. It is concluded that this method could be used to measure the injecting time and validate the picosecond laser injection.

4.
Opt Express ; 27(3): 3180-3189, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30732343

ABSTRACT

Ultrafast imaging and manipulating transient molecular structures in chemical reactions and photobiological processes is a fundamental but challenging goal for scientists. Theoretically, the challenge originates from the complex multiple-time-scale correlated electron dynamics and their coupling with the nuclei. Here, we employ classical polyatomic models for this kind of study and take the Coulomb explosion of argon and neon trimers in strong laser fields as an illuminating example. Our results demonstrate that the degree of asymmetry on the kinetic energy release (KER) spectrum, together with a Dalitz plot, constitutes a powerful tool for retrieving the ionization, excitation, and polarization configurations (femtosecond-to-attosecond time-scale electron dynamics) of trimers under strong-field radiation.

5.
J Phys Chem A ; 121(20): 3891-3897, 2017 May 25.
Article in English | MEDLINE | ID: mdl-28470067

ABSTRACT

We experimentally and theoretically studied dissociative ionization of argon dimer driven by intense femtosecond laser pulses. In the experiment, we measured the ion yield and the angular distribution of fragmental ions generated from the dissociative ionization channels of (1,1) (Ar22+ → Ar+ + Ar+) and (2,1) (Ar23+ → Ar2+ + Ar+) using a cold target recoil ion momentum spectroscopy. The channel ratio of (2,1)/(1,1) is 4.5-7.5 times of the yield ratio of double ionization to single ionization of argon monomer depending on the laser intensity. The measurement verified that the ionization of Ar+ is greatly enhanced if there exists a neighboring Ar+ separated by a critical distance. In addition, the fragmental ions exhibit an anisotropic angular distribution with the peak along the laser polarization direction and the full width at half maximum becomes broader with increasing laser intensity. Using a full three-dimensional classical ensemble model, we calculated the angle-dependent multiple ionization probability of argon dimer in intense laser fields. The results show that the experimentally observed anisotropic angular distribution of fragmental ions can be attributed to the angle-dependent enhanced ionization of the argon dimer in intense laser fields.

6.
Sci Rep ; 6: 19628, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26787363

ABSTRACT

It is generally expected that the interface coupling leads to the suppression of thermal transport through coupled nanostructures due to the additional interface phonon-phonon scattering. However, recent experiments demonstrated that the interface van der Waals interactions can significantly enhance the thermal transfer of bonding boron nanoribbons compared to a single freestanding nanoribbon. To obtain a more in-depth understanding on the important role of the nonlinear interface coupling in the heat transports, in the present paper, we explore the effect of nonlinearity in the interface interaction on the phonon transport by studying the coupled one-dimensional (1D) Frenkel-Kontorova lattices. It is found that the thermal conductivity increases with increasing interface nonlinear intensity for weak inter-chain nonlinearity. By developing the effective phonon theory of coupled systems, we calculate the dependence of heat conductivity on interfacial nonlinearity in weak inter-chain couplings regime which is qualitatively in good agreement with the result obtained from molecular dynamics simulations. Moreover, we demonstrate that, with increasing interface nonlinear intensity, the system dimensionless nonlinearity strength is reduced, which in turn gives rise to the enhancement of thermal conductivity. Our results pave the way for manipulating the energy transport through coupled nanostructures for future emerging applications.

7.
Article in English | MEDLINE | ID: mdl-25679599

ABSTRACT

We conduct a study on heat conduction through coupled Fermi-Pasta-Ulam (FPU) chains by using classical molecular dynamics simulations. Our attention is dedicated to showing how the phonon transport is affected by the interchain coupling. It has been well accepted that the heat conduction could be impeded by the interchain interaction due to the interface phonon scattering. However, recent theoretical and experimental studies suggest that the thermal conductivity of nanoscale materials can be counterintuitively enhanced by the interaction with the substrate. In the present paper, by consecutively varying the interchain coupling intensity, we observed both enhancement and suppression of thermal transport through the coupled FPU chains. For weak interchain couplings, it is found that the heat flux increases with the coupling intensity, whereas in the case of strong interchain couplings, the energy transport is found to be suppressed by the interchain interaction. Based on the phonon spectral energy density method, we attribute the enhancement of the energy transport to the excited phonon modes (in addition to the intrinsic phonon modes), while the upward shift of the high-frequency phonon branch and the interface phonon-phonon scattering account for the suppressed heat conduction.

8.
Article in English | MEDLINE | ID: mdl-24229243

ABSTRACT

The spatiotemporal propagation behavior of a solitary wave is investigated on a Fermi-Pasta-Ulam ring. We observe the emergence of a cnoidal wave excited by the solitary wave. The cnoidal wave may coexist with the solitary wave for a long time associated with the periodic exchange of energy between these two nonlinear waves. The module of the cnoidal wave, which is considered as an indicator of the nonlinearity, is found to oscillate with the same period of the energy exchange. After the stage of coexistence, the interaction between these two nonlinear waves leads to the destruction of the cnoidal wave by the radiation of phonons. Finally, the interaction of the solitary wave with phonons leads to the loss of stability of the solitary wave.

SELECTION OF CITATIONS
SEARCH DETAIL
...