Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 485
Filter
1.
Article in English | MEDLINE | ID: mdl-38946304

ABSTRACT

OBJECTIVES: Polymyxin-induced nephrotoxicity (PIN) is a major safety concern and challenge in clinical practice, which limits the clinical use of polymyxins. This study aims to investigate the risk factors and to develop a scoring tool for the early prediction of PIN. METHODS: Data on critically ill patients who received intravenous polymyxin B or colistin sulfate for over 24 h were collected. Logistic regression with the least absolute shrinkage and selection operator (LASSO) was used to identify variables that are associated with outcomes. The eXtreme Gradient Boosting (XGB) classifier algorithm was used to further visualize factors with significant differences. A prediction model for PIN was developed through binary logistic regression analysis and the model was assessed by temporal validation and external validation. Finally, a risk-scoring system was developed based on the prediction model. RESULTS: Of 508 patients, 161 (31.6%) patients developed PIN. Polymyxin type, loading dose, septic shock, concomitant vasopressors and baseline blood urea nitrogen (BUN) level were identified as significant predictors of PIN. All validation exhibited great discrimination, with the AUC of 0.742 (95% CI: 0.696-0.787) for internal validation, of 0.708 (95% CI: 0.605-0.810) for temporal validation and of 0.874 (95% CI: 0.759-0.989) for external validation, respectively. A simple risk-scoring tool was developed with a total risk score ranging from -3 to 4, corresponding to a risk of PIN from 0.79% to 81.24%. CONCLUSIONS: This study established a prediction model for PIN. Before using polymyxins, the simple risk-scoring tool can effectively identify patients at risk of developing PIN within a range of 7% to 65%.

2.
J Biophotonics ; : e202300474, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38938055

ABSTRACT

Noninvasive and real-time optical detection of cardiac hemodynamics dysfunction during myocardial ischemia remains challenging. In this study, we developed a near-infrared spectroscopy device to monitor rats' myocardial hemodynamics. The well-designed system can accurately reflect the hemodynamics changes by the classic upper limb ischemia test. Systemic hypoxia by disconnecting to the ventilator and cardiac ischemia by coronary artery slipknot ligation was conducted to monitor myocardial hemodynamics. When systemic hypoxia occurred, ΔHbR and ΔtHb increased significantly, whereas ΔHbO decreased rapidly. When coronary blood flow was obstructed by slipknots, cardiothoracic ΔHbO immediately begins to decline, while ΔHbR also significantly increases. Simultaneously, SpO2 did not show any obvious changes during myocardial ischemia, while SpO2 decreased significantly during systemic hypoxia. These results demonstrated that cardiothoracic hemodynamics stemmed from myocardial ischemia. This pilot study demonstrated the practicality of noninvasive, low-cost optical monitoring for cardiac oxygenation dysfunction in rats.

3.
Biochem Biophys Rep ; 39: 101736, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38910872

ABSTRACT

The three-dimensional (3D) kidney organoid is a breakthrough model for recapitulating renal morphology and function in vitro, which is grown from stem cells and resembles mammalian kidney organogenesis. Currently, protocols for cultivating this model from induced pluripotent stem cells (iPSCs) and patient-derived adult stem cells (ASCs) have been widely reported. In recent years, scientists have focused on combining cutting-edge bioengineering and bioinformatics technologies to improve the developmental accuracy of kidney organoids and achieve high-throughput experimentation. As a remarkable tool for mechanistic research of the renal system, kidney organoid has both potential and challenges. In this review, we have described the evolution of kidney organoid establishment methods and highlighted the latest progress leading to a more sophisticated kidney transformation research model. Finally, we have summarized the main applications of renal organoids in exploring kidney disease.

4.
J Am Chem Soc ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38906845

ABSTRACT

A cyclic thioenone system capable of controlled ring-opening polymerization (ROP) is presented that leverages a reversible Michael addition-elimination (MAE) mechanism. The cyclic thioenone monomers are easy to access and modify and for the first time incorporate the dynamic reversibility of MAE with chain-growth polymerization. This strategy features mild polymerization conditions, tunable functionalities, controlled molecular weights (Mn), and narrow dispersities. The obtained polythioenones exhibit excellent optical transparency and good mechanical properties and can be depolymerized to recover the original monomers. Density functional theory (DFT) calculations of model reactions offer insights into the role of monomer conformation in the polymerization process, as well as explaining divergent reactivity observed in seven-membered thiepane (TP) and eight-membered thiocane (TC) ring systems. Collectively, these findings demonstrate the feasibility of MAE mechanisms in ring-opening polymerization and provide important guidelines toward future monomer designs.

5.
Biomimetics (Basel) ; 9(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38921247

ABSTRACT

The blood coagulation test is an indispensable test for monitoring the blood coagulation and fibrinolysis functions. Currently, activated partial thromboplastin time (APTT) is the most widely used approach to coagulation testing. However, APTT reagents need to be optimized due to the fact that they are unstable, highly variable, and cannot be easily controlled. In this study, we created apoptotic cell-inspired methacryloyloxyethyl phosphorylserine (MPS) particles for blood coagulation as an alternative to conventional APTT reagents. Particle size could be controlled by changing the concentration of the polymer. The blood coagulation ability of particles was stable at different environmental temperatures. Moreover, the procoagulant activity could be enhanced by increasing the concentration to 0.06 mg/mL and reducing the size of the particles to around 900 nm. Fibrin clotted by particles showed no significant difference from that formed by APTT regent Actin FSL. We propose that MPS particles are a potential alternative to Actin FS for the application of blood coagulation tests.

6.
Heliyon ; 10(11): e32230, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38933948

ABSTRACT

Colon cancer is a common gastrointestinal malignancy that ranks third in incidence among gastrointestinal cancers. Therefore, screening bioactive compounds for treatment of colon cancer is urgently needed. Sanguisorba officinalis L. (SO) has been demonstrated that the extractions or monomers possess potential anti-tumor effect. In this study, we firstly used cell membrane chromatography (CMC) and ultra-performance liquid chromatography coupled with (quadrupole) time-of-flight mass spectrometry (UHPLC-(Q) TOF-MS/MS) to identify a novel active ingredient, octyl gallate (OG), from SO methanol extract (SO-MtOH). HCT116 and SW620 cells lines were used for in vitro research, which showed OG presents great anti-colon cancer effect by inhibiting proliferation, inducing apoptosis, and repressing the migration and invasion. Furthermore, SW620 bearing athymic nude mice was used to investigate the potential antitumor activity in vivo, which exhibited OG treatment remarkably lessened the tumor volume. Mechanism studies showed that OG downregulated the PI3K/AKT/mTOR signaling axis and induced apoptosis by upregulating the Bax/Bcl-2 protein and the cleaved caspase-3, caspase-9. In conclusion, our research innovatively applied the method of CMC to intriguingly unearth the potential anti-colon cancer ingredient OG and demonstrated its the great antineoplastic activity, which provide a new insight for researchers efficiently developing the novel apoptosis-inducing compound for colon cancer therapy.

7.
Heliyon ; 10(9): e30015, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38707411

ABSTRACT

Here, we presented 6 patients who were admitted to our institution and diagnosed as myasthenia gravis (MG) with tongue muscle atrophy. All these 6 patients developed symptoms of bulbar muscle weakness in acetylcholine receptor antibodies positive MG (AChR-MG) (3/6), muscle-specific receptor tyrosine kinase antibodies positive MG (MuSK-MG) (1/6), and sero-negative MG (2/6). Most of patients had "triple-furrowed" tongue except for patient 2 with irregular atrophy of tongue muscle. Tongue muscle atrophy occurs in patients with MuSK-MG, AChR-MG, and sero-negative MG. Atrophied tongue muscles of five patients with MG were reversible after immunotherapy.

8.
Comput Biol Med ; 176: 108537, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744008

ABSTRACT

BACKGROUND: Anti-PD-1/PD-L1 treatment has achieved durable responses in TNBC patients, whereas a fraction of them showed non-sensitivity to the treatment and the mechanism is still unclear. METHODS: Pre- and post-treatment plasma samples from triple negative breast cancer (TNBC) patients treated with immunotherapy were measured by tandem mass tag (TMT) mass spectrometry. Public proteome data of lung cancer and melanoma treated with immunotherapy were employed to validate the findings. Blood and tissue single-cell RNA sequencing (scRNA-seq) data of TNBC patients treated with or without immunotherapy were analyzed to identify the derivations of plasma proteins. RNA-seq data from IMvigor210 and other cancer types were used to validate plasma proteins in predicting response to immunotherapy. RESULTS: A random forest model constructed by FAP, LRG1, LBP and COMP could well predict the response to immunotherapy. The activation of complement cascade was observed in responders, whereas FAP and COMP showed a higher abundance in non-responders and negative correlated with the activation of complements. scRNA-seq and bulk RNA-seq analysis suggested that FAP, COMP and complements were derived from fibroblasts of tumor tissues. CONCLUSIONS: We constructe an effective plasma proteomic model in predicting response to immunotherapy, and find that FAP+ and COMP+ fibroblasts are potential targets for reversing immunotherapy resistance.


Subject(s)
Immunotherapy , Proteomics , Single-Cell Analysis , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/blood , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/immunology , Female , Immunotherapy/methods , Single-Cell Analysis/methods , Proteomics/methods , B7-H1 Antigen/blood , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Transcriptome , Immune Checkpoint Inhibitors/therapeutic use , Gene Expression Profiling , Proteome
9.
Dermatitis ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563786

ABSTRACT

Background: Mutations in filaggrin (FLG), the gene that codes for the skin barrier protein, have been shown to be associated with atopic dermatitis (AD). Objective: The objectives of this study were to determine the effects of genetic counseling and parental education on infants at a high risk of AD. Methods: We enrolled 7521 newborns in Taiwan from January 1, 2016, to March 30, 2020, and all of them received genetic testing encompassing 20 known FLG mutations. The genetic counseling and AD prevention and care team consisted of pediatricians, dermatologists, social workers, and genetic counselors. The counseling was arranged for at least 30 minutes within 45 days after delivery. Results: A total of 2963 high-risk infants (39.4%) were identified. Homozygous c.1432C>T was the most commonly identified mutation. A total of 418 neonates' parents were stratified into counseling and noncounseling groups, where the effect of parental education was evaluated. The genetically stratified parental education program was effective in preventing AD development by 63.3% in high-risk infants before 12 months of life (P < 0.0001). Conclusion: Genetic stratification and parental education are effective in preventing the development of AD in high-risk infants before 12 months of life.

10.
Pathogens ; 13(4)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38668254

ABSTRACT

Orientia tsutsugamushi is an obligate intracellular bacterium associated with trombiculid mites and is the causative agent of scrub typhus, a life-threatening febrile disease. Strain typing of O. tsutsugamushi is based on its immunodominant surface antigen, 56-kDa type-specific antigen (TSA56). However, TSA56 gene sequence-based phylogenetic analysis is only partially congruent with core genome-based phylogenetic analysis. Thus, this study investigated whether concatenated surface antigen sequences, including surface cell antigen (Sca) proteins, can reflect the genome-scale phylogeny of O. tsutsugamushi. Complete genomes were obtained for two common O. tsutsugamushi strains in Taiwan, TW-1 and TW-22, and the core genome/proteome was identified for 11 O. tsutsugamushi strains. Phylogenetic analysis was performed using maximum likelihood (ML) and neighbor-joining (NJ) methods, and the congruence between trees was assessed using a quartet similarity measure. Phylogenetic analysis based on 691 concatenated core protein sequences produced identical tree topologies with ML and NJ methods. Among TSA56 and core Sca proteins (ScaA, ScaC, ScaD, and ScaE), TSA56 trees were most similar to the core protein tree, and ScaA trees were the least similar. However, concatenated ScaA and TSA56 sequences produced trees that were highly similar to the core protein tree, the NJ tree being more similar. Strain-level characterization of O. tsutsugamushi may be improved by coanalyzing ScaA and TSA56 sequences, which are also important targets for their combined immunogenicity.

11.
BMC Plant Biol ; 24(1): 340, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671402

ABSTRACT

Astragalus mongholicus is a medicinal plant that is known to decrease in quality in response to continuous cropping. However, the differences in the root-associated microbiome and root exudates in the rhizosphere soil that may lead to these decreases are barely under studies. We investigated the plant biomass production, root-associated microbiota, and root exudates of A. mongholicus grown in two different fields: virgin soil (Field I) and in a long-term continuous cropping field (Field II). Virgin soil is soil that has never been cultivated for A. mongholicus. Plant physiological measurements showed reduced fresh and dry weight of A. mongholicus under continuous cropping conditions (i.e. Field II). High-throughput sequencing of the fungal and bacterial communities revealed differences in fungal diversity between samples from the two fields, including enrichment of potentially pathogenic fungi in the roots of A. mongholicus grown in Field II. Metabolomic analysis yielded 20 compounds in A. mongholicus root exudates that differed in relative abundance between rhizosphere samples from the two fields. Four of these metabolites (2-aminophenol, quinic acid, tartaric acid, and maleamate) inhibited the growth of A. mongholicus, the soil-borne pathogen Fusarium oxysporum, or both. This comprehensive analysis enhances our understanding of the A. mongholicus microbiome, root exudates, and interactions between the two in response to continuous cropping. These results offer new information for future design of effective, economical approaches to achieving food security.


Subject(s)
Microbiota , Plant Roots , Rhizosphere , Soil Microbiology , Plant Roots/microbiology , Astragalus Plant/microbiology , Plant Exudates/metabolism , Fungi/genetics , Fungi/physiology , Crop Production/methods , Bacteria/genetics , Bacteria/metabolism
12.
Adv Sci (Weinh) ; 11(23): e2402509, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38590132

ABSTRACT

Diagnosis and stratification of prostate cancer (PCa) patients using the prostate-specific antigen (PSA) test is challenging. Extracellular vesicles (EVs), as a new star of liquid biopsy, has attracted interest to complement inaccurate PSA screening and invasiveness of tissue biopsy. In this study, a panel of potential small EV (sEV) protein biomarkers is identified from PCa cell lines using label-free LC-MS/MS proteomics. These biomarkers underwent further validation with plasma and urine samples from different PCa stages through parallel reaction monitoring-based targeted proteomics, western blotting, and ELISA. Additionally, a tissue microarray containing cancerous and noncancerous tissues is screened to provide additional evidence of selected sEV proteins associated with cancer origin. Results indicate that sEV protein LAMB1 is highly expressed in human plasma of metastatic PCa patients compared with localised PCa patients and control subjects, while sEV protein Histone H4 is highly expressed in human urine of high-risk PCa patients compared to low-risk PCa patients and control subjects. These two sEV proteins demonstrate higher specificity and sensitivity than the PSA test and show promise for metastatic PCa diagnosis, progression monitoring, and risk stratification.


Subject(s)
Biomarkers, Tumor , Extracellular Vesicles , Histones , Prostatic Neoplasms , Proteomics , Humans , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Male , Proteomics/methods , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/urine , Extracellular Vesicles/metabolism , Histones/metabolism , Risk Assessment/methods , Middle Aged , Aged , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Laminin
13.
Int J Environ Health Res ; : 1-11, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38590026

ABSTRACT

The roles of aryl hydrocarbon receptor (AhR), AhR-nuclear translocator (ARNT), and AhR repressor (AhRR) genes in the elevation of cord blood IgE (CbIgE) remained unclear. Our aims were to determine the polymorphisms of AhR, ARNT, and AhRR genes, cord blood AhR (CBAhR) level, and susceptibility to elevation of CbIgE. 206 infant-mother pairs with CbIgE>=0.35 IU/ml and 421 randomly selected controls recruited from our previous study. Genotyping was determined using TaqMan assays. Statistical analysis showed AhR rs2066853 (GG vs. AA+AG: adjusted OR (AOR)=1.5, 95%CI=1.10-2.31 and AOR=1.60, 95%CI=1.06-2.43, respectively) and the combination of AhR rs2066853 and maternal total IgE (mtIgE)>=100 IU/ml were significantly correlated with CbIgE>=0.35 IU/ml or CbIgE>=0.5 IU/ml. CBAhR in a random subsample and CbIgE levels were significantly higher in infants with rs2066853GG genotype. We suggest that infant AhR rs2066853 and their interactions with mtIgE>=100 IU/ml significantly correlate with elevated CbIgE, but AhRR and ARNT polymorphisms do not.

14.
Adv Healthc Mater ; : e2304136, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38551143

ABSTRACT

Oncolytic virus therapy is currently regarded as a promising approach in cancer immunotherapy. It has greater therapeutic advantages for colorectal cancer that is prone to distant metastasis. However, the therapeutic efficacy and clinical application of viral agents alone for colorectal cancer remain suboptimal. In this study, an engineered oncolytic vaccinia virus (OVV-Luc) that expresses the firefly luciferase gene is developed and loaded Chlorin e6 (Ce6) onto the virus surface through covalent coupling, resulting in OVV-Luc@Ce6 (OV@C). The OV@C infiltrates tumor tissue and induces endogenous luminescence through substrate catalysis, resulting in the production of reactive oxygen species. This unique system eliminates the need for an external light source, making it suitable for photodynamic therapy (PDT) in deep tissues. Moreover, this synergistic effect between PDT and viral immunotherapy enhances dendritic cell maturation, macrophage polarization, and reversal of the immunosuppressive microenvironment. This synergistic effect has the potential to convert a "cold" into a "hot" tumor, it offers valuable insights for clinical translation and application.

15.
J Agric Food Chem ; 72(6): 2963-2976, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38305024

ABSTRACT

Polycystic ovarian syndrome (PCOS) is the major cause of infertility in reproductive women, but no universal drug is feasible. Although puerarin clinically treats cerebrovascular and cardiovascular diseases, its curative effect on PCOS remains elusive. The present study discovered that administration of puerarin restored estrous cycle of PCOS mice and diminished the number of cystic follicles with the concomitant recovery for circulating testosterone, LH and FSH levels, and LH/FSH ratio, indicating the therapeutic role of puerarin in PCOS. KEGG analysis of differential genes between PCOS and control revealed the enrichment in MAPK and calcium signaling pathway. Application of puerarin restricted the phosphorylation of ERK1/2 and JNK, whose activation neutralized the improvement of puerarin on the secretory function and apoptosis of ovarian granulosa cells (GCs). Meanwhile, puerarin alleviated the accumulation of cytosolic Ca2+ through restricting the opening of Ryr and Itpr channels, but this effectiveness was counteracted by the activatory ERK1/2 and JNK. Attenuation of cytosolic Ca2+ counteracted the antagonistic effects of ERK1/2 and JNK activation on puerarin's role in rescuing the calcineurin and Nfatc. Further analysis manifested that Mcu had been authenticated as a direct downstream target of Nfatc to mediate the amelioration of puerarin on mitochondrial Ca2+ uptake. Moreover, puerarin prevented the disorder of ATP content, mitochondrial membrane potential, and mitochondrial permeability transition pore opening through maintaining mitochondrial Ca2+ homeostasis. Collectively, puerarin might ameliorate the symptoms of PCOS mice through preventing mitochondrial dysfunction that is dependent on the maintenance of intracellular Ca2+ homeostasis after inactivation of ERK1/2 and JNK.


Subject(s)
Isoflavones , Mitochondrial Diseases , Polycystic Ovary Syndrome , Female , Humans , Mice , Animals , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism , Calcium/metabolism , Granulosa Cells , Follicle Stimulating Hormone/metabolism , Follicle Stimulating Hormone/pharmacology , Follicle Stimulating Hormone/therapeutic use , Mitochondrial Diseases/metabolism
16.
Heliyon ; 10(4): e24644, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38390059

ABSTRACT

Ethnopharmacological relevance: Astragalus polysaccharide (APS), the most biologically active ingredient of Astragali Radix, is used to treat diabetes mellitus (DM)-related chronic wounds in traditional Chinese medicine for several decades. This herb possesses an anti-inflammatory effect. Our study proved that APS can reduce excessive inflammation at the late phase of wound-healing in diabetic ulcers. Aim of the study: To clarify the molecular mechanism of APS in promoting wound-healing via reducing excessive inflammation in diabetic ulcers during the late stages of wound-healing. Methods and materials: The rat model of the diabetic ulcers was established via intraperitoneal injection of streptozocin (60 mg/kg). We detected the regulation of APS on diabetic ulcers by measuring wound-healing rates. Bioinformatics was used to predict the target genes of APS, and autodocking was used to predict the combination of APS and target genes. Immunohistochemistry, Enzyme-linked immunosorbent assay, Western blot, immunofluorescence staining, flow cytometry, and flow cytometric sorting were investigated. Results: The results demonstrated that APS promoted wound-healing and inhibited excessive inflammation at the late phase of wound-healing in diabetic rats. Mechanistic findings showed that APS promoted the expression of ß-catenin and Rspo3 while inhibiting the expression of NF-KB and GSK-3ß, which leads to the transformation of M1-type macrophages into M2-type macrophages and thus reducing excessive inflammation at the late phase of wound-healing in diabetic ulcers. Conclusion: We found an interesting finding that APS promoted the polarization of macrophages towards M2-type through the ß-catenin/NF-κB axis to reduce excessive inflammation at the late phase of wound-healing. Therefore, APS may be a promising drug for treating diabetic ulcers in clinic.

17.
Proteomics ; 24(6): e2300242, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38171885

ABSTRACT

Clear cell ovarian carcinoma (CCOC) is a relatively rare subtype of ovarian cancer (OC) with high degree of resistance to standard chemotherapy. Little is known about the underlying molecular mechanisms, and it remains a challenge to predict its prognosis after chemotherapy. Here, we first analyzed the proteome of 35 formalin-fixed paraffin-embedded (FFPE) CCOC tissue specimens from a cohort of 32 patients with CCOC (H1 cohort) and characterized 8697 proteins using data-independent acquisition mass spectrometry (DIA-MS). We then performed proteomic analysis of 28 fresh frozen (FF) CCOC tissue specimens from an independent cohort of 24 patients with CCOC (H2 cohort), leading to the identification of 9409 proteins with DIA-MS. After bioinformatics analysis, we narrowed our focus to 15 proteins significantly correlated with the recurrence free survival (RFS) in both cohorts. These proteins are mainly involved in DNA damage response, extracellular matrix (ECM), and mitochondrial metabolism. Parallel reaction monitoring (PRM)-MS was adopted to validate the prognostic potential of the 15 proteins in the H1 cohort and an independent confirmation cohort (H3 cohort). Interferon-inducible transmembrane protein 1 (IFITM1) was observed as a robust prognostic marker for CCOC in both PRM data and immunohistochemistry (IHC) data. Taken together, this study presents a CCOC proteomic data resource and a single promising protein, IFITM1, which could potentially predict the recurrence and survival of CCOC.


Subject(s)
Carcinoma , Ovarian Neoplasms , Female , Humans , Prognosis , Proteomics/methods , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Proteome/analysis , Biomarkers , Biomarkers, Tumor
18.
Adv Mater ; : e2310040, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291858

ABSTRACT

Digital Light Processing (DLP) is a vat photopolymerization-based 3D printing technology that fabricates parts typically made of chemically crosslinked polymers. The rapidly growing DLP market has an increasing demand for polymer raw materials, along with growing environmental concerns. Therefore, circular DLP printing with a closed-loop recyclable ink is of great importance for sustainability. The low-ceiling temperature alkyl-substituted δ-valerolactone (VL) is an industrially accessible biorenewable feedstock for developing recyclable polymers. In this work, acrylate-functionalized poly(δ-valerolactone) (PVLA), synthesized through the ring-opening transesterification polymerization of VL, is used as a platform photoprecursor to improve the chemical circularity in DLP printing. A small portion of photocurable reactive diluent (RD) turns the unprintable PVLA into DLP printable ink. Various photocurable monomers can serve as RDs to modulate the properties of printed structures for applications like sacrificial molds, soft actuators, sensors, etc. The intrinsic depolymerizability of PVLA is well preserved, regardless of whether the printed polymer is a thermoplastic or thermoset. The recovery yield of virgin quality VL monomer is 93% through direct bulk thermolysis of the printed structures. This work proposes the utilization of depolymerizable photoprecursors and highlights the feasibility of biorenewable VL as a versatile material platform toward circular DLP printing.

19.
Innovation (Camb) ; 5(1): 100544, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38235188

ABSTRACT

Amyloid-ß, tau pathology, and biomarkers of neurodegeneration make up the core diagnostic biomarkers of Alzheimer disease (AD). However, these proteins represent only a fraction of the complex biological processes underlying AD, and individuals with other brain diseases in which AD pathology is a comorbidity also test positive for these diagnostic biomarkers. More AD-specific early diagnostic and disease staging biomarkers are needed. In this study, we performed tandem mass tag proteomic analysis of paired cerebrospinal fluid (CSF) and serum samples in a discovery cohort comprising 98 participants. Candidate biomarkers were validated by parallel reaction monitoring-based targeted proteomic assays in an independent multicenter cohort comprising 288 participants. We quantified 3,238 CSF and 1,702 serum proteins in the discovery cohort, identifying 171 and 860 CSF proteins and 37 and 323 serum proteins as potential early diagnostic and staging biomarkers, respectively. In the validation cohort, 58 and 21 CSF proteins, as well as 12 and 18 serum proteins, were verified as early diagnostic and staging biomarkers, respectively. Separate 19-protein CSF and an 8-protein serum biomarker panels were built by machine learning to accurately classify mild cognitive impairment (MCI) due to AD from normal cognition with areas under the curve of 0.984 and 0.881, respectively. The 19-protein CSF biomarker panel also effectively discriminated patients with MCI due to AD from patients with other neurodegenerative diseases. Moreover, we identified 21 CSF and 18 serum stage-associated proteins reflecting AD stages. Our findings provide a foundation for developing blood-based tests for AD screening and staging in clinical practice.

20.
Aging Cell ; 23(2): e14035, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37970652

ABSTRACT

The role of circulatory proteomics in osteoporosis is unclear. Proteome-wide profiling holds the potential to offer mechanistic insights into osteoporosis. Serum proteome with 413 proteins was profiled by liquid chromatography-tandem mass spectrometry (LC-MS/MS) at baseline, and the 2nd, and 3rd follow-ups (7704 person-tests) in the prospective Chinese cohorts with 9.8 follow-up years: discovery cohort (n = 1785) and internal validation cohort (n = 1630). Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry (DXA) at follow-ups 1 through 3 at lumbar spine (LS) and femoral neck (FN). We used the Light Gradient Boosting Machine (LightGBM) to identify the osteoporosis (OP)-related proteomic features. The relationships between serum proteins and BMD in the two cohorts were estimated by linear mixed-effects model (LMM). Meta-analysis was then performed to explore the combined associations. We identified 53 proteins associated with osteoporosis using LightGBM, and a meta-analysis showed that 22 of these proteins illuminated a significant correlation with BMD (p < 0.05). The most common proteins among them were PHLD, SAMP, PEDF, HPTR, APOA1, SHBG, CO6, A2MG, CBPN, RAIN APOD, and THBG. The identified proteins were used to generate the biological age (BA) of bone. Each 1 SD-year increase in KDM-Proage was associated with higher risk of LS-OP (hazard ratio [HR], 1.25; 95% CI, 1.14-1.36, p = 4.96 × 10-06 ), and FN-OP (HR, 1.13; 95% CI, 1.02-1.23, p = 9.71 × 10-03 ). The findings uncovered that the apolipoproteins, zymoproteins, complements, and binding proteins presented new mechanistic insights into osteoporosis. Serum proteomics could be a crucial indicator for evaluating bone aging.


Subject(s)
Osteoporosis , Proteome , Humans , Prospective Studies , Proteomics , Chromatography, Liquid , Tandem Mass Spectrometry , Osteoporosis/genetics , Aging
SELECTION OF CITATIONS
SEARCH DETAIL
...